Ranchview County Water District Grid Integrated Solar Power for Water Delivery

Preliminary Engineering Report

117-750919-24001 May 2025

Ranchview County Water District Grid Integrated Solar Power for Water Delivery Preliminary Engineering Report

PRESENTED TO

PRESENTED BY

Ranchview County Water District Board of Directors

Tetra Tech, Inc. 825 West Custer Ave. Helena, MT 59602

406-443-5210 tetratech.com

7735 N Montana Avenue Helena, MT 59602

Prepared by:

adin Mora

Madison Moran, Environmental Scientist 4/30/2025

Prepared by:

Eddie Persondek, Electrical Design Engineer 4/30/2025

Reviewed by:

Beau Downing, PH, PMP Project Manager

4/30/2025

TABLE OF CONTENTS

1.0	1.0 EXECUTIVE SUMMARY1		
2.0	PROJECT PLANNING	1	
	2.1 Location	2	
	2.2 Environmental Resources Present	3	
	2.3 Population Trends	.4	
	2.4 Community Engagement	4	
3.0	EXISTING FACILITIES	4	
	3.1 Location Map	.4	
	3.2 History	.4	
	3.3 Condition of Existing Facilities	.5	
	3.4 Financial Status of Any Existing Facilities	.5	
	3.5 Water/Energy/Waste Audits	.5	
4.0	NEED FOR PROJECT	5	
	4.1 Health, Sanitation, and Security	5	
	4.2 Aging Infrastructure	.6	
	4.3 Reasonable Growth	.6	
5.0	ALTERNATIVE CONSIDERED	6	
	5.1 Alternative Design #1 Single Axis Tracker	7	
	5.2 Alternative Design #2 Fixed Tilt1	.0	
	5.3 Alternative Design #3: Fix Tilt System with BESS1	.3	
6.0	SELECTED ALTERNATIVE DESIGN	6	
	6.1 Life Cycle Cost Analysis1	.7	
7.0	PROPOSED PROJECT1	7	
	7.1 Preliminary Project Design1	.7	
	7.2 Project Schedule1	.8	
	7.3 Permit Requirements	.8	
	7.4 Sustainability Considerations1	.8	
	7.5 Total Project Cost Estimate1	.9	

7.6 Annual Operating Budget	19
8.0 CONCLUSION AND RECOMMENDATIONS	19
9.0 REFERENCES	21

LIST OF TABLES

Table 5-1. System Summary Table for Each Alternative	6
Table 5-2. Alternative #1 System Specifications	8
Table 5-3. Alternative #2 System Specifications	11
Table 5-4. Alternative #3 System Specifications	14

LIST OF FIGURES

Figure 2-1. Topographic map of Site Location.	2
Figure 5-1. Alternative #1 Map	9
Figure 5-2. Alternative #2 Map	12
Figure 5-3. Alternative #3 Map	15

APPENDICES

Appendix A: Figures Appendix B: Environmental Checklist Appendix C: Site Photographs Appendix D: Design Documents Appendix E: NWE Electrical Permit Appendix F: NWE Project Qualifications and Proposal Requirements

ACRONYMS/ABBREVIATIONS

Acronyms/Abbreviations	Definition		
AC	Alternating Current		
AEP	Annual Energy Production (in kilowatt-hours or kWh)		
BOP	Balance of Plant		
BESS	Battery Energy Storage System		
CE	Categorical Exclusion		
CREST	Cost of Renewable Energy Spreadsheet Tool (NERL)		
DC	Direct Current		
DNRC	Montana Department of Natural Resources and Conservation		
EA	Environmental Assessment		
EIS	Environmental Impact Statement		
FT	Fixed Tilt		
GEW	Great West Engineering		
ITC	Investment Tax Credit		
kW	Kilowatts		
kWh	Kilowatt hours		
LOD	Limits of Disturbance; assumed equal to the Site, Site boundary and buildable area		
NREL	National Renewable Energy Labs		
NEW	NorthWestern Energy		
PER	Preliminary Engineering Report		
PTC	Production Tax Credit		
PVPEL	Kiwa's PV Evolution Labs		
RCWD	Ranchview County Water District		
ROM	Rough Order of Magnitude		
RRPG	Renewable Resources Planning Grant		
SAT	Single-Axis Tracker(s)		
SLD	Single-Line Diagram		
SWDA	Safe Water Drinking Act		
TBD	To be determined		

Acronyms/Abbreviations	Definition
USB	Universal System Benefits
USD	United States Dollar
W2ASACT	Water, Wastewater, and Solid Waste Action Coordinating Team

1.0 EXECUTIVE SUMMARY

Tetra Tech Inc. (Tetra Tech) has prepared this Preliminary Engineering Report (PER) and three accompanying conceptual solar plant design alternatives for a Grid-Integrated Solar Plant for the Ranchview County Water District (RCWD), with funding provided by a Montana Department of Natural Resources and Conservation (DNRC) Renewable Resource Planning Grant (RRPG).

This PER and the accompanying design documents are part of a task order Tetra Tech received from the DNRC to assist the RCWD Board of Directors with their Renewable Resource Planning Grant Application. The focus of the planning grant application was to secure funding to evaluate grid-integrated solar energy alternatives to supplement, or fully offset, the approximate 75,000 kilowatt-hours (kWh) consumed by the RCWD water delivery system that serves the Ranchview subdivision in Helena, Montana.

The RCWD maintains a public water system (Department of Environmental Quality Public Water System #MT0003782) under Lewis and Clark County Water and Sewer District, which consists of an irrigation supply system and potable domestic water. The RCWD currently serves 107 homes with an estimated population of 257 people.

Previous upgrades to the Ranchview Estates community water system were completed under the suggested alternatives of the Water System PER submitted by Great West Engineering (GWE) in 2020 (GWE, 2020). Though this conceptual solar plant design PER focuses on upgrades to the existing electrical source system, the previous Water System PER completed by GWE is referenced throughout this report.

Tetra Tech was tasked with developing three conceptual designs for a ground-mounted solar array including equipment recommendations, electric supply system designs, plant and equipment layouts, and energy production estimates for the proposed location on property owned by Lewis and Clark County, currently under a public utility easement to RCWD.

This PER provides background information on the Ranchview Estates water distribution electrical components, their water delivery systems, describes the solar plant design alternatives analysis, results of the analysis, and selects the preferred alternative of the fixed tilt solar array, and related electronic systems. This PER meets the requirements of the PER Outline within the Uniform Application Supplement for Montana Public Facility Projects, as required by Montana's Water, Wastewater, and Solid Waste Action Coordinating Team (W2ASACT, 2022).

2.0 PROJECT PLANNING

The RCWD board of directors, following implemented water efficiency upgrades based on the Water System PER (GWE, 2020), is evaluating opportunities to integrate solar energy into the RCWD water delivery system to increase system efficiencies and offset grid-supplied energy sources and costs.

The RCWD submitted the Renewable Resources Planning Grant (RRPG) application Tetra Tech assisted in developing and subsequently was awarded \$30,000 to evaluate grid integrated solar energy alternatives to

supplement, or fully offset, the approximate 75,000 kilowatt-hours (kWh) consumed annually by the RCWD's water delivery system.

2.1 LOCATION

The existing service area consists of the RCWD service area boundary, which primarily covers the entirety of the Ranchview Estates subdivision. The RCWD is located within Lewis and Clark County, approximately 8 miles north of the City of Helena. The subdivision is bordered by Montana Avenue to the west, I-15 to the east, the Helena Valley Canal to the south, and undeveloped state and private land to the north. The address for the pump house is 7735 N Montana Ave, Helena, Montana 59602.

More specifically, the RCWD is located at:

- Township/Range/Section: Township 11N, Range 3W, Section 17.
- Average elevation: 3,800 feet.

Topography in the planning area generally slopes to the southeast toward Lake Helena, located approximately 3 miles southeast of Ranchview Estates. Elevations within the planning area range from 3,812 feet above mean sea level at the northwestern corner of the subdivision, to 3,778 feet above mean sea level at the southern portion of the boundary. **Figure 2-1**, below, presents a topographic map of the planning area. A full 7.5 minute topographic map, legal property boundaries, and aerial imagery are presented in **Appendix A**.

Figure 2-1. Topographic map of Site Location.

2.2 ENVIRONMENTAL RESOURCES PRESENT

The alternative selected by RCWD will impact approximately 0.5 acres of previously disturbed and currently undeveloped land. Prior to the development of these alternatives, the surrounding environmental resources were reviewed for potential impacts. A completed Uniform Environmental Checklist for the proposed solar panel conceptual design is included in **Appendix B**. Minimal impact resulting from the proposed improvements has been identified. Description of the environmental resources that may be impacted within and surrounding the site boundary are provided below.

Land Resources. Land use within the site boundary is previously disturbed and currently undeveloped grasslands surrounding the pumphouse and potential construction areas. The parcel being considered for solar panel construction is owned by Lewis and Clark County and contains grasses and shrubs or small trees (MTNHP). Tetra Tech personnel contacted Chrystal Ness, at the Community Development and Planning division, to initially assess if there would be additional permits required by the County for construction and electrical work. There will be construction and electrical permits required through NorthWestern Energy (NWE) and Lewis and Clark County. Permission will be needed to conduct construction on county land, regardless of minimal permanent impacts and avoidance of utilities within the designs.

Minimal permanent impacts are anticipated in association with the construction of the solar panels. Natural revegetation of the disturbances due to construction are likely to be effective, due to the limited size of the footprint of the site area. Areas of disturbance will be restored to original conditions, to the greatest extent possible, upon completion of construction. Minimal adverse impacts to biological resources are anticipated and the grasslands that would be permanently impacted are not classified as critical habitat (MTNHP).

Biological Resources. The solar panels will permanently impact the grasslands; however, the preferred selected alternative has a minimal footprint of only impacting approximately 0.5 acres of undeveloped grasslands. The site boundary does not fall within sage grouse habitat. There are no mapped wetlands within the preferred alternative location. The preferred alternative is not classified as an Important Bird Area or an Important Plant Area by the Montana Natural Heritage Program. Canadian Lynx, Grizzly Bears, Rufa Red Knot, Monarch Butteryfly, Suckley's Cuckoo Bumble Bee, and Bald and Golden Eagles are species that may be potentially impacted due to construction. The preferred alternative is not likely to impact these species as it does not impact critical habitat and has a minimal permanent footprint of approximately 0.5 acres, (MTNHP).

Visual Resources. The addition of the solar panels and fencing will cause visual obstructions. The fenced area would be approximately less than one acre and would remain within the Lewis and Clark County Utility Easement. The mechanical and electrical components of the solar panels would create a low volume, low frequency humming noise that may be audible when near the panels.

The proposed alternatives were designed to intentionally minimize permanent impacts to the residents of Ranchview Estates and the surrounding natural environment. Additional information including the sources used to make these assessments are listed within the completed environmental checklist, presented in **Appendix B**. Depending on the source of funding acquired to construct the selected alternative, additional review of the temporary and permanent impacts associated with the selected alternative may be required.

2.3 POPULATION TRENDS

The alternative analyses presented in this report are based on the existing population of Ranchview Estates and will not consider future growth.

There are 107 total households in the Ranchview Subdivision. Assuming 2.4 persons per household, as determined from Lewis and Clark County census data, equates to an existing population of approximately 257 people living within the planning area (GWE, 2020).

2.4 COMMUNITY ENGAGEMENT

RCWD Board meetings are publicly available and have been used to discuss and provide feedback for the PER alternatives. A website is established for RCWD to communicate updates regarding the Ranchview Estates community, <u>www.ranchviewwaterusers.com</u>, and regular board meetings are held to discuss community needs. Bob Bennett, RCWD Board President, will post this PER to the website which will then become publicly available for RCWD and surrounding community members to review. Ongoing discussion will be held within the community to provide the RCWD Board with feedback regarding the proposed project and future funding options.

3.0 EXISTING FACILITIES

3.1 LOCATION MAP

The existing water system configuration was mapped in the Water System PER (GWE, 2020) and is shown in **Appendix A**. A site walk was completed by Tetra Tech personnel and a RCWD representative in January 2025. Photographs of existing facilities are presented in **Appendix C**.

3.2 HISTORY

The water system that currently services Ranchview Estates was completed in phases throughout the 1990s and early 2000s. Additional upgrades were completed in 2018 and 2019, including installation of new riser pipe sections installed in potable wells, new submersible pumps at one potable well, and one new irrigation well pump (GWE, 2020).

At the suggestion of the Water System PER in November 2020, RCWD completed several updates which included replacement of two in-well pumps to improve water pressure across the potable water system; the purchase of a backup pump in preparation for mechanical pump failures or supply chain issues; replacement of aging PVC within the pumphouse and wellhouse areas to improve earthquake and natural disaster resiliency; installation of a new fence to increase security; and upgrades on the electrical system to its current configuration by replacing the flow and pressure meters.

3.3 CONDITION OF EXISTING FACILITIES

The condition of existing facilities pertaining to water supply and distribution was assessed utilizing information acquired through the Water System PER conducted in November 2020 by Great West Engineering (GWE, 2020). Additional updates to the water supply system that have occurred since the previous PER were reported to Tetra Tech personnel by RCWD Board personnel. Visual inspection of the current facility's electrical components was conducted in January 2025 by Tetra Tech personnel. The following assessments were made:

- The facility's main electrical service is a 3-Phase, 4-Wire, 480V/277V, Grounded Y configuration,
- The existing utility meter is a single-direction consumption meter,
- The existing main service panel is a 250A 480V NEMA 3R rated panel with an Eaton surge protection device installed, located on the exterior of the facility. The current rating of the main breaker in this service panel could not be determined at the time of the site visit. Loads include irrigation pumps and a step-down transformer,
- A Central Pacific 480V/240V step-down transformer located on the exterior of the facility feeds a subpanel on the interior of the facility utilizing variable frequency devices for the facility water pumps, facility lighting, and a data acquisition system.

3.4 FINANCIAL STATUS OF ANY EXISTING FACILITIES

RCWD does not currently have any debt related to the water system. To assess electricity and energy usage, energy bills from 2021 through 2024 were analyzed by Tetra Tech personnel. Financial statements were not included as part of the solar panel conceptual assessment; however, the offset cost of installing and operating solar panels is considered in each alternative.

3.5 WATER/ENERGY/WASTE AUDITS

No water, energy, or waste audits were conducted for RCWD's electrical supply to the water systems.

4.0 NEED FOR PROJECT

4.1 HEALTH, SANITATION, AND SECURITY

There are no concerns regarding health, sanitation, or security regulations in regard to the presented alternative actions for conceptual solar array design. Safe work practices will be implemented and followed during the construction process. The installation of solar panels may require additional security measures, including a fence surrounding the panel area. The RCWD regularly meets the requirements set forth in drinking water standards and regulations, as reviewed in the previous water systems and meets the requirements for the Safe Water Drinking Act (SWDA) (GWE, 2020) (Ranchview Estates, CCR 2024).

4.2 AGING INFRASTRUCTURE

The RCWD has identified energy conservation and energy sources as the next phase in potential system improvements. Implementing a solar array will conserve resources, improve the resiliency and efficiency of operations, and upgrade the current electrical system.

4.3 REASONABLE GROWTH

Ranchview Estates is fully developed within their current boundary. The District Board is not considering extending water service beyond the district boundary.

5.0 ALTERNATIVE CONSIDERED

Tetra Tech developed three conceptual designs, estimated each alternative's Annual Energy Production (AEP) through modeling and simulation, and reviewed 3+ years of RCWD utility bills to estimate future energy costs for the RCWD. Table 5-1, below, provides a summary, including preliminary stage cost and financial data, for the three alternative conceptual designs.

Design	Alternative #1 SAT	Alternative #2 FT	Alternative #3 FT w/ BESS
System Size [kW-DC]	66.1	66.1	86.4
System Size [kW-AC]	50	50	48
System Footprint [Acres]	0.547	0.292	0.402
AEP (Est.) [kWh/Yr.]	112,900	88,217	99,232
Performance Ratio	80.92%	81.03%	69.7% ¹
Construction Cost [\$USD/kW-DC] ² , Estimate	\$2,120	\$1,940	\$2,680
Construction Cost Total [\$USD] Estimate	\$172,071	\$160,092	\$209,579
Annual Operating Expense [\$USD/kW-DC/Yr] Estimate ²	\$17.21	\$17.21	\$17.21
Annual Operating Expense [\$USD/Yr] Estimate	\$1,137.581	\$1,137.581	\$1,486.94
Average Annual Energy Use ³ [kWh]	74,412		
Average Energy Cost [\$USD/kWh]	\$0.14175		
Average Annual Energy Cost (Av. over 3.31 Yrs) [\$USD/Yr.]	\$10,547.00		
Predicted Annual Costs (w\Solar) [\$USD/Yr] Estimate	TBD – Pending inputs to CREST model		
NOTES: AC – Alternating Current BESS – Battery Energy Storage System DC – Direct Current FT – Fixed Tilt SAT – Sinale-Axis Tracker(s)			

Table 5-1. System Summary Table for Each Alternative

TBD – To Be Determined

¹ PVSyst is currently unable to model BESS accurately, so Alternative #3 performance ratio does not represent actual performance, as the BESS will use excess energy. The performance ratio will likely be significantly higher, depending on battery discharge profiles.

² U.S. Solar Photovoltaic System and Energy Storage Cost Benchmarks, With Minimum Sustainable Price Analysis: Q1 2022.

The energy and cost information in the table above is based on early-stage desktop analysis using publicly available data and incomplete data from the end client. As such, the cost and AEP data provided should be considered as a rough order of magnitude (ROM) estimate that will change as the project converges on one option and the design is refined.

The Cost of Renewable Energy Spreadsheet Tool (CREST) is a tool that contains economic, cash-flow models that were utilized to estimate the costs associated with the proposed alternatives. The CREST tool considers the effects of different economic drivers including tax rates and inflation while considering project characteristics such as location and land ownership. The awarded \$30,000 RRPG funding already expended for the preliminary design and presentation of this PER is included within the Construction Cost Totals for each alternative. The associated costs with construction and operations and maintenance were derived utilizing the CREST tool by inputting information such as:

- the project size and performance,
- capital costs,
- operations and maintenance,
- construction financing,
- permanent financing,
- Tax Information,
- Cost-Based Tariff Rate Structure,
- Capital Expenditures during operations.

Beyond convergence on one design, further refinement would include, but not limited to, a more rigorous energy analysis using more comprehensive detailed design, more accurate weather data, refined system losses, details of any grants awarded, and any additional data not accounted for, such as:

- Interconnection costs,
- Interconnection application to the local utility,
- Updated equipment costs,
- PTC/ITC changes,
- Detailed environmental and engineering assessment of the land and vicinity (as needed).

The alternatives discussed throughout this PER were designed with a widely utilized simulation software tool, PVsyst, for modeling, simulation, and analysis of PV systems ranging from residential rooftop arrays to utility-scale solar farms. PVsyst generates detailed system specifications, visuals and simulates energy performance, presented in **Appendix D**.

5.1 ALTERNATIVE DESIGN #1 SINGLE AXIS TRACKER

Alternative design 1 is presented in **Appendix D** and includes the installation of solar panels across an approximate 0.54 acres located within the Lewis and Clark County utility easement property and with a

³ Data derived from 3.3 years of energy bills. Data gaps filled in by averaging same months in different years.

minimum setback of 50 feet from the canal. The solar array is located east of the pumphouse and within the required minimum of 20 feet setback from residential parcel lines. The preliminary design for Alternative 1 includes a 50 kW inverter and AC trenching west of the solar array towards the utility meter and point of connection, located at the pumphouse. This alternative would potentially require the removal of trees and installation of an array boundary fence.

50kW-AC capacity is the design criteria limitation for the Northwestern Energy utility grant this project will be applying for. The solar photovoltaic (PV) system was designed with a total DC capacity of 66.08 kW, based on standard test conditions, and a boosted DC capacity of 72.28 kW under best-case (BSTC) conditions. The system is supported by a single SMA Sunny Tripower CORE1 50-US inverter, offering an AC capacity of 50 kVA. This results in a DC/AC ratio of 1.32, and 1.45 under BSTC, providing a balanced performance between energy harvest and inverter capacity.

The design utilizes 112 Q.PEAK DUO XL-G11S.3 / BFG 590 modules, configured into 7 strings, ensuring optimal voltage and current matching. The system is mounted on a single-axis tracker, allowing for dynamic adjustment to the sun's position throughout the day. The array is oriented with an azimuth of 180° (true south) and installed at a tilt angle of ±55°, which is conducive to maximizing annual energy yield.

Alternative 1 is estimated to cost \$172,071 at \$2,120/kW DC, with an annual operating expense of \$1,137.58. The design criteria and system specifications are detailed in table 5-2 and are presented within the PVsyst reports and included as **Appendix D**.

SYSTEM SPECS		
DC CAPACITY (kW)	66.08	
DC CAPACITY - BSTC (kW)	72.28	
AC CAPACITY (KVA)	50	
DC/AC RATIO (%)	1.32	
DC/AC RATIO - BSTC (%)	1.45	
MODULE MODEL	Q.PEAK DUO XL-G11S.3 / BFG 590	
TOTAL NUMBER OF MODULES	112	
TOTAL NUMBER OF STRINGS	7	
INVERTER MODEL	SMA SUNNY TRIPOWER CORE1 50-US	
TOTAL NUMBER OF INVERTERS	1	
TILT	+/- 55	
AZIMUTH	180	
RACKING	SINGLE-AXIS TRACKER	

Table 5-2. Alternative #1 System Specifications

Мар

The work will take place on the Lewis and Clark County owned parcel that is adjacent to the pumphouse. Maps and design drawings are presented in **Appendix D.**

Figure 5-1. Alternative #1 Map

Environmental Impacts

The removal of trees to the south of the fenced-in PV array area and within its boundaries may be required for constructability, minimizing shading on the array, and maximizing energy production. Leveling/grading of the fenced-in PV array area may be required and is to be determined at a later date by a chosen solar installation professional. There are no expected impacts on critical habitats, floodplains, wetlands, historic properties or endangered species. There are minimal permanent impacts associated with the solar panels and fencing including changes to the visual scenery and a low volume humming noise.

Land Requirements

The construction of this alternative would require approximately 0.54 acres of land. The parcel is currently owned by Lewis and Clark County and is under a utility easement for RCWD. Prior to construction, RCWD will need to obtain necessary permissions to construct on Lewis and Clark County land.

Potential Construction Problems

Electrical routing paths and methods within the proposed PV array area and from the proposed PV array area to the water pump house may be impacted by the pre-existing underground water line routing and pump locations and any other existing infrastructure. Prior to construction of the solar array, a 3rd party utility survey may be necessary to ensure that electrical and water utility services are not impacted by array or fencing construction.

Sustainability Considerations

This is a renewable energy project without net metering availability from the utility and is considered to be 'green' infrastructure. The system is intended to offset present electrical energy usage on site of the proposed facility and any excess energy is not credited to the facility owner, instead going to the grid free of charge. Efficiency measures have already been taken to upgrade the water pumping infrastructure prior to the consideration of a photovoltaic energy production system. Current preliminary designs address on site energy consumption with these measures already in place.

5.2 ALTERNATIVE DESIGN #2 FIXED TILT

The solar photovoltaic (PV) system was designed with a total DC capacity of 66.08 kW, based on standard test conditions, and a boosted DC capacity of 72.28 kW under best-case (BSTC) conditions. The solar array is located within the Lewis and Clark County utility easement property and with a minimum setback of 50 feet from the canal.

The solar arrays will occupy a footprint of approximately 0.3 acres. The system is supported by a single SMA Sunny Tripower CORE1 50-US inverter, offering an AC capacity of 50 kVA. This results in a DC/AC ratio of 1.32, and 1.45 under BSTC, providing a balanced performance between energy harvest and inverter capacity.

The design utilizes 112 Q.PEAK DUO XL-G11S.3 / BFG 590 modules, configured into 7 strings, ensuring optimal voltage and current matching. The system is mounted on a fixed-tilt racking system, providing structural stability and consistent solar exposure throughout the year. The array is oriented with an azimuth of 180° (true south) and installed at a tilt angle of 15°, which is conducive to maximizing annual energy yield.

A fixed-tilt racking system is a structural framework used to support and orient solar photovoltaic models at predetermined, non-adjustable angles relative to the horizontal plane. Within the design of Alternative 2, the racking system is set at a tilt angle of 15°, facing due south to increase winter performance by improving solar incidence during low sun angles.

Alternative 2 is estimated to cost \$160,092 at \$1,940/kW DC, with an annual operating expense of \$1,137.58. The design criteria and system specifications are detailed in table 5-3 and are presented within the PVsyst reports and included as **Appendix D**.

SYSTEM SPECS		
DC CAPACITY (kW)	66.08	
DC CAPACITY - BSTC (kW)	72.28	
AC CAPACITY (KVA)	50	
DC/AC RATIO (%)	1.32	
DC/AC RATIO - BSTC (%)	1.45	
MODULE MODEL	Q.PEAK DUO XL-G11S.3 / BFG 590	
TOTAL NUMBER OF MODULES	112	
TOTAL NUMBER OF STRINGS	7	
INVERTER MODEL	SMA SUNNY TRIPOWER CORE1 50-US	
TOTAL NUMBER OF INVERTERS	1	
TILT	15	
AZIMUTH	180	
RACKING	FIXED-TILT	

Table 5-3. Alternative #2 System Specifications

Мар

The work will take place on the Lewis and Clark County owned parcel that is adjacent to the pumphouse. Maps and design drawings are presented in **Appendix D.**

Figure 5-2. Alternative #2 Map

Environmental Impacts

The removal of trees and shrubs to the south of the fenced-in PV array area and within its boundaries may be required for constructability, minimizing shading on the array, and maximizing energy production. Leveling/grading of the fenced-in PV array area may be required and is to be determined at a later date by a chosen solar installation professional. There are no expected impacts on critical habitats, floodplains, wetlands, historic properties or endangered species. There are minimal permanent impacts associated with the solar panels and fencing including changes to the visual scenery and a low volume humming noise.

Land Requirements

The construction of this alternative would require approximately 0.3 acres of land. The parcel is currently owned by Lewis and Clark County and is under a utility easement for RCWD. Prior to construction, RCWD will need to obtain necessary permissions to construct on Lewis and Clark County land.

Potential Construction Problems

Electrical routing paths and methods within the proposed PV array area and from the proposed PV array area to the water pump house may be impacted by the pre-existing underground water line routing and pump locations and any other existing infrastructure. Prior to construction of the solar array, a 3rd party utility survey may be necessary to ensure that electrical and water utility services are not impacted by array or fencing construction.

Sustainability Considerations

This is a renewable energy project without net metering availability from the utility and is considered to be 'green' infrastructure. The system is intended to offset present electrical energy usage on site of the proposed facility and any excess energy is not credited to the facility owner, instead going to the grid free of charge. Efficiency measures have already been taken to upgrade the water pumping infrastructure prior to the consideration of a photovoltaic energy production system. Current preliminary designs address on site energy consumption with these measures already in place.

5.3 ALTERNATIVE DESIGN #3: FIX TILT SYSTEM WITH BESS

The system integrates fixed-tilt racking on a footprint of approximately 0.4 acres, modular battery storage, and grid-interactive inverters to support both self-consumption and resiliency.

The designed solar photovoltaic (PV) and energy storage system features a total DC capacity of 86.40 kW under standard test conditions and 94.50 kW under best-case (BSTC) conditions. The system is configured with an AC capacity of 48 kVA, resulting in a DC/AC ratio of 1.80 (1.97 under BSTC), which ensures high energy harvest with limited power clipping during peak solar conditions. The array consists of 180 Q.PEAK DUO XL-G10.3/BFG 480 W modules, organized into 20 strings for optimal electrical balance and energy distribution.

Energy conversion is handled by five SMA Sunny Boy Smart Energy-US 9.6 inverters, which are hybrid units capable of managing both solar production and battery integration. Energy storage is provided by five SMA Home Storage-US 18.9 batteries, each with a capacity of 18.9 kWh, for a combined system capacity of 94.5 kWh. This battery bank enables load shifting, supports backup power during outages, and enhances overall system resiliency.

The PV modules are mounted on a fixed-tilt racking system set at a 15° angle, facing due south (180° azimuth).

Alternative 3 is estimated to cost \$209,579 at \$2,680/kW DC, with an annual operating expense of \$1,486.94. The design criteria and system specifications are detailed in table 5-4 and are presented within the PVsyst reports and included as **Appendix D**.

Table 5-4. Alternative #3 System Specifications

SYSTEM SPECS		
DC CAPACITY (kW)	86.40	
DC CAPACITY - BSTC (kW)	94.50	
AC CAPACITY (KVA)	48	
DC/AC RATIO (%)	1.80	
DC/AC RATIO - BSTC (%)	1.97	
MODULE MODEL	Q.PEAK DUO XL-G10.3/BFG 480	
TOTAL NUMBER OF MODULES	180	
TOTAL NUMBER OF STRINGS	20	
INVERTER MODEL	SMA SUNNY BOY SMART ENERGY-US 9.6	
TOTAL NUMBER OF INVERTERS	5	
BATTERY MODEL	SMA HOME STORAGE-US 18.9	
BATTERY CAPACITY (kWh)	18.9	
TOTAL NUMBER OF BATTERIES	5	
TOTAL BATTERY CAPACITY (kWh)	94.5	
TILT	15	
AZIMUTH	180	
RACKING	FIXED-TILT	

Мар

The work will take place on the Lewis and Clark County owned parcel that is adjacent to the pumphouse. Maps and design drawings are presented in **Appendix D.**

Figure 5-3. Alternative #3 Map

Environmental Impacts

The removal of trees to the south of the fenced-in PV array area and within its boundaries may be required for constructability, minimizing shading on the array, and maximizing energy production. Leveling/grading of the fenced-in PV array area may be required and is to be determined at a later date by a chosen solar installation professional. There are no expected impacts on critical habitats, floodplains, wetlands, historic

properties or endangered species. There are minimal permanent impacts associated with the solar panels and fencing including changes to the visual scenery and a low volume humming noise.

Land Requirements

The construction of this alternative would require approximately 0.4 acres of land. The parcel is currently owned by Lewis and Clark County and is under a utility easement for RCWD. Prior to construction, RCWD will need to obtain necessary permissions to construct on Lewis and Clark County land.

Potential Construction Problems

Electrical routing paths and methods within the proposed PV array area and from the proposed PV array area to the water pump house may be impacted by the pre-existing underground water line routing and pump locations and any other existing infrastructure. Prior to construction of the solar array, a 3rd party utility survey may be necessary to ensure that electrical and water utility services are not impacted by array or fencing construction.

Sustainability Considerations

This is a renewable energy project without net metering availability from the utility and is considered to be 'green' infrastructure. The system is intended to offset present electrical energy usage on site of the proposed facility and any excess energy is not credited to the facility owner, instead going to the grid free of charge. Efficiency measures have already been taken to upgrade the water pumping infrastructure prior to the consideration of a photovoltaic energy production system. Current preliminary designs address on site energy consumption with these measures already in place.

6.0 SELECTED ALTERNATIVE DESIGN

The alternatives described above are stand-alone, and do not require a detailed comparative analysis. Feedback received from RCWD representatives during the design process indicates that they have determined that the fixed-tilt system (Alternative 2) and single 50kW inverter alternative will be selected as the conceptual solar plant design.

Compared to Alternative 1, which uses a single-axis tracker, Alternative 2 offers equal power output and identical electrical specs (66.08 kW DC capacity, 50 kVA AC capacity, and a DC/AC ratio of 1.32), but with a fixed-tilt racking system. Fixed-tilt systems are mechanically simpler, require less maintenance and are more reliable in harsh or variable weather conditions. Though the tracking system in Alternative 1 may marginally improve energy yield, it introduces mechanical complexity and long-term maintenance costs. Alternative 3 provides a higher capacity (86.4 kW DC and 94.5 kWh battery storage) while requiring higher installation and equipment costs, increased system complexity and greater operational needs as the solar array system ages.

Additional non-monetary factors were considered by RCWD during the design process. These included efforts to minimize the system's permanent footprint in order to reduce potential impacts on natural resources, as well as the assessment of potential noise and visual disturbances associated with the tracker system proposed in Alternative 1.

Alternative 2 offers the lowest construction costs, a compact footprint, and meets the majority of energy demand. Alternative 2 provides optimal energy performance with reduced maintenance and construction costs, making it the most practical and efficient design option for RCWD.

6.1 LIFE CYCLE COST ANALYSIS

Life Cycle Cost Analysis (LCCA) is a method used to evaluate the costs associated with the solar array system over its life span, which is assumed to be 25 years, and includes construction costs and operational and maintenance costs. The initial construction cost of the selected alternative has been estimated at \$160,092 using the CREST tool. This total includes \$30,000 in RRPG funding already expended for the preparation of this PER, and a remaining balance of \$130,092 representing anticipated implementation costs.

The selected design for a 50 kW AC and 66.08 kW DC photovoltaic system is categorized as a small commercial solar installation, utilizing the SMA Sunny Tripower CORE1 50-US inverter. The estimated market price for this ground-mounted system is \$1.94 per watt DC, based on Q1 2022 U.S. PV cost benchmarks. As project funding will come from a grant, the interest and discount rates are set to zero. Energy production and capacity factor calculations were conducted using PVsyst modeling software, included in **Appendix D**. The fixed Operations and Maintenance (O&M) expense for the first year is projected at \$17.21 per kW-yr DC, reflecting a 2.5% inflation rate based on Q1 2022 U.S. PV cost benchmarks. Additionally, inverter replacement costs are estimated at \$0.150 per watt DC, based on the average price of the SMA Sunny Tripower CORE1 inverter, which is approximately \$7,500.

When accounting for installation, maintenance, equipment replacement, Alternative 2 is the most costeffective and reliable option for RCWD.

7.0 PROPOSED PROJECT

7.1 PRELIMINARY PROJECT DESIGN

Alternative 2 represents a fixed-tilt solar photovoltaic (PV) system optimized for energy performance, simplicity, and long-term operational efficiency. This system is particularly well-suited for RCWD, where durability, low maintenance, and consistent energy delivery are critical.

The array consists of 112 Hanwa Q-Cells Q.PEAK DUO XL-G11S.3/BFG 590W modules. The combination of efficiency, power output, technology, durability, and the manufacturer's reputation make the Hanwha Q-Cells Q.PEAK DUO XL-G11S.3/BFG 590W modules a strong choice for solar energy solutions. The system is designed with a DC capacity of 66.08 kW under STC, which increases to 72.28 kW under BSTC. This enhanced capacity reflects the theoretical maximum power output under ideal environmental conditions. The PV array is situated approximately 200 feet northwest of the main facility within the easement boundaries provided to Tetra Tech.

The PV array feeds into a single SMA Sunny Tripower CORE1 50-US inverter, located within the array boundary, which has an AC output capacity of 50 kVA. The inverter was placed in this location to minimize electrical losses

and provide ease in commissioning and O&M procedures. The Selected Alternative design presented in **Appendix D** is preliminary and will need additional refinement before its implementation.

7.2 PROJECT SCHEDULE

Tetra Tech recommends that RCWD utilize this PER to apply for funding to provide the capital needed to install the solar array and associated construction costs. The E+ Renewable Incentives provide a limited amount of Universal System Benefits (USB) for renewable energy installations on non-profit or government/public buildings. Proposals are considered twice a year with Spring proposals due on May 1 and Fall proposals due on November 1.

Following the acquisition of funding for the construction costs and solar array installation, a final design of the selected alternative will need to be completed. Additionally, RCWD will need to contact Lewis and Clark County representatives for required permits and permissions for the installation of the solar array on county land. RCWD will also need to apply for interconnection permitting with NWE, discussed in section 7.3 Permit Requirements.

Due to the minimal potential of grading, tree removal and small footprint of the solar arrays, construction is estimated to take less than one month. This estimate was applied within the CREST model. Additional construction, including the fencing and potential need for revegetation of surrounding impacted areas may include additional needed time.

7.3 PERMIT REQUIREMENTS

Tetra Tech personnel contacted Lewis and Clark County representative, Chrystal Ness, regarding permits needed for construction on county property. The associated designs do not interfere with current utilities and the construction of the solar array will produce minimal impacts. Due to the permanence of these solar panels, and the potential sources of funding received, additional environmental review may be required, including a Categorical Exclusion (CE), Environmental Assessment (EA), or Environmental Impact Statement (EIS).

Additional electrical permitting through Northwestern Energy will be required. Projects that receive funding through the E+ Renewable Energy Incentive must be installed by a NorthWestern Energy Qualified Installer. RCWD will need to perform a Level 1 Small Generator Facility Interconnect Request for interconnecting an electric small generator facility with aggregate nameplate capacity of up to 50kW AC using certified interconnection equipment. An example of this form is provided in **Appendix E.**

7.4 SUSTAINABILITY CONSIDERATIONS

The installation of a solar array by RCWD to power potable water distribution to Ranchview estates will offset energy usage that was previously provided by NorthWestern Energy. Reliable and affordable clean energy will benefit the Ranchview Estates community by offsetting energy costs, while providing a demonstrated example of the implementation of solar arrays for small community water systems. RCWD is an early adopter within the Helena Valley of solar array systems; demonstrating success within this community may encourage other systems within the region to consider sustainable options for energy production.

The board of directors of the RCWD are aware there are approximately 60 other county water districts registered with the Montana Secretary of State. Upon successful implementation of a solar powered water delivery system within RCWD, the board intends to reach out to all other county water districts to provide detailed background information about the planning and implementation within the RCWD and encourage further consideration by other water districts to develop alternative options for power production.

7.5 TOTAL PROJECT COST ESTIMATE

The total project cost estimate for the selected alternative is based on the preliminary design and is subject to alteration during the finalization of design and implementation of the project during construction. Total project cost estimate is represented in Table 5-1, and was derived from estimates input in the CREST model. The total project cost estimate for the selected alternative is \$160,092, which includes the construction and material costs, the design cost, and the RRPG award. This total includes \$30,000 in RRPG funding already expended for the preparation of this PER, and a remaining balance of \$130,092 representing anticipated implementation costs.

7.6 ANNUAL OPERATING BUDGET

RCWD does not currently have outstanding debt. There is no anticipated debt associated with the construction of the selected alternative or the operating costs, as the implementation of these alternatives will rely on the successful acquisition of funding from grant sources.

The annual operating budget is subject to change based on the yearly required maintenance of the solar panels, fencing and other material costs as the system ages. The annual operating expense is estimated at \$1,137.58 per year based on a unit rate of \$17.21 per kW-DC for a system size of 66.1 kW/DC.

8.0 CONCLUSION AND RECOMMENDATIONS

The Selected Alternative offers a strategic balance of performance, cost, and simplicity, making it the most suitable option for RCWD. Its high-performance ratio and reduced maintenance burden make it a strong long-term investment with the potential for rapid payback and substantial operational savings. Unlike more complex systems involving trackers or energy storage, this fixed-tilt system ensures mechanical simplicity and resilience, ease of maintenance, and predictable output, which are priorities for infrastructure systems with limited operational resources.

Tetra Tech recommends that the RCWD continues to pursue grant-based funding options to supply funds for the implementation of the solar array. Tetra Tech encourages RCWD to apply for the Renewable Resource Grant and Loan Program administered by the Resource Development Bureau of the DNRC. This program limits grant funding to a maximum of \$125,000 and Project Planning Grants are limited to \$15,000. Another funding option

is the NorthWestern Energy E+ Renewable Incentives program for renewable energy installations on non-profit or government/public buildings. Applications for this Universal System Benefits (USB) program are acceptable bi-annually and include the need for a cover letter and a written proposal. The project qualifications and proposal requirements are located in **Appendix F**.

Based on the sources of the funding received, additional environmental review may be required, including a CE, EA or an EIS. These permits are not exhaustive, and Tetra Tech personnel recommends RCWD contact a Lewis and Clark County representative regarding potential permitting needs for the selected alternative's construction.

Additionally, due to the current land use of the parcel of the selected alternative, the RCWD will need to apply for the proper permits regarding conducting construction within their easement. Additional permits from NWE for electric work, operations, and maintenance will be necessary.

9.0 REFERENCES

Conservation Map. Accessed on April 28, 2025. <u>https://sagegrouse.mt.gov/ProgramMap</u>.

FEMA's National Flood Hazard Layer (NFHL) Viewer. FEMA Flood Map Service Center | Search By Address.

- Gifford, Jason S. and Robert C. Grace. 2013. CREST: Cost of Renewable Energy Spreadsheet Tool: A Model for Developing Cost-Based Incentives in the United States. Version 4. August 2009 – March 2011. Subcontract Report NREL/SR-6A20-50374. July 2013.
- Great West Engineering. Preliminary Engineering Report: Water System Improvements. Ranchview Water District. November 2020.
- Montana Bureau of Mines and Geology (MBMG). Montana Groundwater Information Center.
- Montana Department of Commerce, Community Development Division. Montana Census Geography Viewer. <u>Census Geography Map | Montana Department of Commerce</u>.
- Montana Department of Environmental Quality. Sanitary Survey Inspection of Ranchview Estates WUA (PWSID: MT0003782). December 4, 2017.
- Montana Natural Heritage Program (MTNHP). Protected Areas/Irrigation/Important Bird Areas/Important Plant Areas/Predicted Habitat Suitability Models/Range Maps/Generalized Observation. <u>NHP Generalized</u> <u>Observations</u>.
- Montana Natural Heritage Program (MTNHP) and Montana Fish, Wildlife and Parks (FWP). Montana Animal Montana Sage Grouse Habitat Conservation Program. Montana Sage Grouse Habitat.
- Montana State Library. Geographic Information Clearinghouse. Geographic Information Home
- Montana Water and Wastewater Infrastructure Act (W2ASACT). UNIFORM APPLICATION W2ASACT DNRC. 13th Edition. March 2022.
- Office of Environment and Energy (OEE). Tribal Directory Tool. Accessed 4/28/2025. TDAT
- Office of the Federal Register, National Archives and Records Administration. 88 Stat. 1660 Safe Drinking Water Act. U.S. Government Printing Office, <u>88 Stat. 1660 - Safe Drinking Water Act - Content Details -</u> <u>STATUTE-88-Pg1660-2</u>).
- Ranchview Estates. Annual Consumer Confidence Report (CCR). 2024. Publicly accessible and accessed through Home - Ranchview Water Users. <u>https://www.ranchviewwaterusers.com</u>.
- Ramasamy, Vignesh, Jarett Zuboy, Eric O'Shaughnessy, David Feldman, Jal Desai, Michael Woodhouse, Paul Basore, and Robert Margolis. 2022. U.S. Solar Photovoltaic System and Energy Storage Cost Benchmarks, With Minimum Sustainable Price Analysis: Q1 2022. Golden, CO: National Renewable Energy Laboratory. NREL/TP-7A40-83586. <u>https://www.nrel.gov/docs/fy22osti/83586.pdf</u>

Species of Concern Report. Retrieved on April 28, 2025. <u>MTNHP.org - SOC Report</u>.

United States Department of Agriculture Natural Resources Conservation Service. Web Soil Survey. Web Soil Survey.

United States Fish and Wildlife Service. National Wetlands Inventory NWI Mapper. National Wetlands Inventory

Water Well Data. Helena, Montana: Montana State Library.

APPENDIX A: FIGURES

Grid Zone Designati 12T

2025

Helena

ADJOINING QUADRANGLES

Path: O:\N-S\Ranchview County Water District\117-750919-24001 - RCWD Solar PER\08-GIS\RCWD MAPS.aprx

APPENDIX B: ENVIRONMENTAL CHECKLIST

Environmental Checklist

Environmental Checklist Prepared by:

On: 4-29-2025

Name of Person 1	Organization
Beau Downing	Tetra Tech, Inc.
Phone Number	Email
406-437-9865	Beau.Downing@tetratech.com
Name of Person 2	Organization
Madison Moran	Tetra Tech, Inc.
Phone Number	Email
406-410-4964	Madison.Moran@tetratech.com

List additional people above. Include organization, phone number and email for all.

As the environmental specialist for the Engineer that prepared the preliminary engineering report I, <u>Beau Downing</u>, PH, PMP, have reviewed the information presented in this checklist and believe that it accurately identifies the environmental resources in the area and the potential impacts that the project could have on those resources. In addition, the required state and federal agencies were provided with the required information about the project and requested to provide comments on the proposed public facility project. Their comments have been incorporated into and attached to the Preliminary Engineering Report.

Engineer's Signature:

Date: 4-29-2025

Physical Environment			
Impact Code	Impact Type	Permits/ Mitigation Required?	Explanation of Impact to Resource
1. Soil Suitability, Topographic and/or Geologic Constraints (example: soil slump, steep slopes, subsidence,			
seismic activity)			
 No Impact Beneficial Adverse 	 Direct Indirect Cumulative 	 Permit Mitigation NA 	Current Conditions: Musselshell-Crago complex 2 to 8 percent slope, and Thess-Scravo complex 0 to 8 percent slope. Farmland of Local importance, but out of production. Land is designated as a county park with not infrastructure. There are no geologic constraints. Preferred Alternative Environmental Narrative: The preferred alternative will require minimal trenching to bury electrical lines that connect the solar panel array to the inverter and meter. The conceptual designs were created to minimize potential need for

2. Hazardous Facilities (example: power lines, hazardous waste sites, acceptable distance from explosive and			
flammable hazards including chemical/petrochemical storage tanks, underground fuel storage tanks, and			
	Ch as natural gas		Current Conditions:
			The numphouse stores utilities that supply water to the
			surrounding community. There is no historical storage of
□ Adverse			hazardous materials there. There are no
			Preferred Alternative Environmental Narrative:
			The preferred alternative will not interfere with hazardous
			facilities.
			The Montana DEQ Leaking Underground Tank Database, PFAS
			sites, Solid Waste Facilities, Tank Substances Releases, Potential
			Contaminant Source Review Areas are available at <u>Untitled map</u> .
3. Surrounding Air Quality (example: dust, odors, emissions)			
No Impact	Direct	🗆 Permit	Current Conditions:
Beneficial	Indirect	Mitigation	There are no current impacts to air quality.
Adverse	Cumulative	🗆 NA	Preferred Alternative Environmental Narrative:
			Adverse minimal impacts to air quality due to dust may occur
			during construction. Any impacts would be temporary, and
			reasonable efforts would be taken during construction to
			minimize impacts to air quality.
4. Groundwater Re	sources and Aqui	fers (example:	quantity, quality, distribution, depth to groundwater, sole
source aquifers)		I	
No Impact	Direct	🗆 Permit	Current Conditions:
Beneficial	Indirect	Mitigation	The groundwater depth and static water level averages 38- 60 feet
□ Adverse	Cumulative	🗆 NA	below ground surface. The wells that supply the RCWD were
			drilled in 1993, and supply water to Ranchview Estates.
			drilled in 1993, and supply water to Ranchview Estates. <u>Preferred Alternative Environmental Narrative:</u>
			drilled in 1993, and supply water to Ranchview Estates. Preferred Alternative Environmental Narrative: The preferred alternative will not directly impact the quantity or quality groundwater resources. It will indirectly impact the
			drilled in 1993, and supply water to Ranchview Estates. Preferred Alternative Environmental Narrative: The preferred alternative will not directly impact the quantity or quality groundwater resources. It will indirectly impact the distribution of groundwater resources to Ranchview Estates
			drilled in 1993, and supply water to Ranchview Estates. Preferred Alternative Environmental Narrative: The preferred alternative will not directly impact the quantity or quality groundwater resources. It will indirectly impact the distribution of groundwater resources to Ranchview Estates residents by reducing costs, improving efficiency and providing
			drilled in 1993, and supply water to Ranchview Estates. <u>Preferred Alternative Environmental Narrative:</u> The preferred alternative will not directly impact the quantity or quality groundwater resources. It will indirectly impact the distribution of groundwater resources to Ranchview Estates residents by reducing costs, improving efficiency and providing access to a renewable energy resource.
			drilled in 1993, and supply water to Ranchview Estates. Preferred Alternative Environmental Narrative: The preferred alternative will not directly impact the quantity or quality groundwater resources. It will indirectly impact the distribution of groundwater resources to Ranchview Estates residents by reducing costs, improving efficiency and providing access to a renewable energy resource. Montana Groundwater Information Center (GWIC)
5. Surface Water/V	Vater Quality, Qu	antity and Dist	drilled in 1993, and supply water to Ranchview Estates. <u>Preferred Alternative Environmental Narrative:</u> The preferred alternative will not directly impact the quantity or quality groundwater resources. It will indirectly impact the distribution of groundwater resources to Ranchview Estates residents by reducing costs, improving efficiency and providing access to a renewable energy resource. Montana Groundwater Information Center (GWIC) ribution (example: streams, lakes, storm runoff, irrigation
5. Surface Water/V systems, canals)	Vater Quality, Qu	antity and Dist	drilled in 1993, and supply water to Ranchview Estates. Preferred Alternative Environmental Narrative: The preferred alternative will not directly impact the quantity or quality groundwater resources. It will indirectly impact the distribution of groundwater resources to Ranchview Estates residents by reducing costs, improving efficiency and providing access to a renewable energy resource. Montana Groundwater Information Center (GWIC) ribution (example: streams, lakes, storm runoff, irrigation
5. Surface Water/V systems, canals)	Vater Quality, Qu	antity and Dist	drilled in 1993, and supply water to Ranchview Estates. Preferred Alternative Environmental Narrative: The preferred alternative will not directly impact the quantity or quality groundwater resources. It will indirectly impact the distribution of groundwater resources to Ranchview Estates residents by reducing costs, improving efficiency and providing access to a renewable energy resource. Montana Groundwater Information Center (GWIC) ribution (example: streams, lakes, storm runoff, irrigation <u>Current Conditions:</u>
5. Surface Water/V systems, canals)	Vater Quality, Qu	antity and Dist	drilled in 1993, and supply water to Ranchview Estates. <u>Preferred Alternative Environmental Narrative:</u> The preferred alternative will not directly impact the quantity or quality groundwater resources. It will indirectly impact the distribution of groundwater resources to Ranchview Estates residents by reducing costs, improving efficiency and providing access to a renewable energy resource. Montana Groundwater Information Center (GWIC) ribution (example: streams, lakes, storm runoff, irrigation <u>Current Conditions:</u> There are no surface water resources present. The Helena Valley
5. Surface Water/V systems, canals) No Impact Beneficial Adverse	Vater Quality, Qu Direct Indirect Cumulative	antity and Dist	drilled in 1993, and supply water to Ranchview Estates. <u>Preferred Alternative Environmental Narrative:</u> The preferred alternative will not directly impact the quantity or quality groundwater resources. It will indirectly impact the distribution of groundwater resources to Ranchview Estates residents by reducing costs, improving efficiency and providing access to a renewable energy resource. Montana Groundwater Information Center (GWIC) ribution (example: streams, lakes, storm runoff, irrigation <u>Current Conditions:</u> There are no surface water resources present. The Helena Valley Canal is the nearest surface water
5. Surface Water/V systems, canals) No Impact Beneficial Adverse	Vater Quality, Qu Direct Indirect Cumulative	antity and Dist	drilled in 1993, and supply water to Ranchview Estates. Preferred Alternative Environmental Narrative: The preferred alternative will not directly impact the quantity or quality groundwater resources. It will indirectly impact the distribution of groundwater resources to Ranchview Estates residents by reducing costs, improving efficiency and providing access to a renewable energy resource. Montana Groundwater Information Center (GWIC) ribution (example: streams, lakes, storm runoff, irrigation Current Conditions: There are no surface water resources present. The Helena Valley Canal is the nearest surface water Preferred Alternative Environmental Narrative:
5. Surface Water/V systems, canals) No Impact Beneficial Adverse	Vater Quality, Qu Direct Indirect Cumulative	antity and Dist	drilled in 1993, and supply water to Ranchview Estates. Preferred Alternative Environmental Narrative: The preferred alternative will not directly impact the quantity or quality groundwater resources. It will indirectly impact the distribution of groundwater resources to Ranchview Estates residents by reducing costs, improving efficiency and providing access to a renewable energy resource. Montana Groundwater Information Center (GWIC) ribution (example: streams, lakes, storm runoff, irrigation Current Conditions: There are no surface water resources present. The Helena Valley Canal is the nearest surface water Preferred Alternative Environmental Narrative: The preferred alternative will not impact surface water or water quality.
6. Floodplains and of the project.)	Floodplain Mana	gement (Ident	ify any floodplains within one mile of the boundary
--	--	--	--
□ No Impact □ Beneficial □ Adverse	 Direct Indirect Cumulative 	 Permit Mitigation NA 	<u>Current Conditions:</u> There are no FEMA mapped floodplains identified within one mile of the boundary of the project. <u>Preferred Alternative Environmental Narrative:</u> There are no FEMA mapped floodplains identified within one mile
			of the boundary of the project. Fema Flood Map Service Center
7. Wetlands (Ident impacts.)	tify any wetlands	within one mil	e of the boundary of the project and state potential
 No Impact Beneficial Adverse 	 Direct Indirect Cumulative 	 Permit Mitigation NA 	Current Conditions:No wetlands occur within the project boundary.Preferred Alternative Environmental Narrative:The preferred alternative does not impact wetland or riparianareas.USFWS National Wetlands Inventory
8. Agricultural Lan or unique agricultu the boundary of th	ds, Production, a ural lands) Identif ne project.	nd Farmland Pr fy any prime or	otection (example: grazing, forestry, cropland, prime important farm ground or forest lands within one mile of
□ No Impact <mark>□ Beneficial</mark> □ Adverse	 Direct Indirect Cumulative 	 Permit Mitigation NA 	Current Conditions:The current owner of the land is Lewis and Clark County. The RCWD has an easement to operate and distribute water to Ranchview Estates. The land is classified as farmland of local importance, but the area is out of production and designated as undeveloped parkland. There are areas within one mile of the project that are classified as farmland of statewide or local importance or prime farmland.Preferred Alternative Environmental Narrative: The preferred alternative would permanently impact 0.5 acres of undeveloped, unused by Lewis and Clark County land that is classified as farmland of local importance. The construction of solar panels on this area will minimally impact the surrounding land and will provide a renewable energy source.
9. Vegetation and life and habitats)	Wildlife Species a	and Habitats, In	cluding Fish (example: terrestrial, avian and aquatic
 No Impact Beneficial Adverse 	Direct Indirect Cumulative	 Permit Mitigation NA 	Current Conditions: The project boundary is not within sage grouse habitat. The current land resources within the project footprint of the preferred alternative is undeveloped grasses. Canadian Lynx, Grizzly Bears, Rufa Red Knot, Monarch Butterfly, Suckley's Cuckoo Bumble Bee, Bald and Golden Eagles are species that are listed as threatened or potentially threatened within the project region. Due to the residential surroundings and undeveloped but previously disturbed grasslands, this area is not likely to provide habitat for these species. Preferred Alternative Environmental Narrative: The preferred alternative has a small footprint of approximately 0.5 acres and impacts a plot of grassland owned by Lewis and

			Clark County with a utility easement for RCWD. The area that will potentially house the solar array will be permanently impacted (approximately 0.5 acres of undeveloped previously disturbed
			grasses) but the surrounding areas will likely not receive permanent adverse impacts.
			Montana Natural Heritage Program Montana Sage Grouse Habitat Conservation Program USFWS Resources – Listed in reference section of PER
10. Unique, Endan (example: plants, f	gered, Fragile, or fish or wildlife)	Limited Enviro	nmental Resources, Including Endangered Species
□ No Impact	□ Direct	🗆 Permit	Current Conditions:
Beneficial	□ Indirect	□ Mitigation	The project location will take place within a utility easement area
☐ Adverse	Cumulative		that is comprised of previously disturbed and undeveloped
			grasslands.
			Preferred Alternative Environmental Narrative:
			The preferred alternative is unlikely to impact unique,
			endangered, magne, or innited environmental resources.
			Montana Natural Heritage Program
			Montana Sage Grouse Habitat Conservation Program
			USFWS Resources – Listed in reference section of PER
11. Unique Natura	l Features (exam	ple: geologic fe	atures)
No Impact	Direct	🗆 Permit	Current Conditions:
Beneficial	Indirect	□ Mitigation	There are no unique natural features that were present at the site
□ Adverse	Cumulative	🗆 NA	during the site walks.
			Preferred Alternative Environmental Narrative:
			The project location will take place within a utility easement area
			that is comprised of previously disturbed and undeveloped
			grassiands.
12 Access to and	Quality of Recre	ational and Wil	derness Activities - Public Lands and Waterways
(including Federa	Ily Designated W	/ild & Scenic R	ivers), and Public Open Space
🗆 No Impact	Direct	🗆 Permit	Current Conditions:
Beneficial	□ Indirect	□ Mitigation	The project location is located within Lewis and Clark County and
□ Adverse	Cumulative	🗆 NA	the RCWD has a utility easement.
			Preferred Alternative Environmental Narrative:
			Ine preterred alternative will require a portion (approximately less than 1 acre) of the Lewis and Clark County easement to be
			fenced off from the public for safety and security purposes. All
			other access will remain as it is currently. Interpretive signs and
			educational requirements of potential grant funding sources
			would provide a public educational benefit for park users.

Human Environment					
Impact Code Impact Type Resource					
1. Visual Quality – Coherence, Diversity, Compatibility of Use and Scale, Aesthetics					
🗆 No Impact	Direct	🗆 Permit	Current Conditions:		
□ Beneficial	□ Indirect	Mitigation	The project location will take place within a utility easement area		
□ <mark>Adverse</mark>	Cumulative	🗆 NA	that is comprised of previously disturbed and undeveloped		
			grasslands.		
			Preferred Alternative Environmental Narrative: The		
			solar panels and fencing will create a slight visual		
			obstruction within the open space. Fence type and		
			solar array siting will mitigate the adverse effects by		
			limiting the size of the solar array and choosing		
2 Nuisanaas (avar	nalo, glovo, fumo		fencing that blends with natural surroundings.		
2. Nuisances (exan	npie: giare, tumes	5)	Concept Conditioner		
☐ No Impact		□ Permit	<u>Current Conditions:</u>		
Beneficial	□ Indirect	□ <mark>Mitigation</mark> 	The project location will take place within a utility easement area		
□ Adverse	Cumulative	□ NA	that is comprised of previously disturbed and undeveloped		
			grassiands.		
			The professed alternative may cause temperary and		
			minimal impacts associated with construction such		
			as increased construction traffic, dust, and exhaust		
			fumes from construction equipment		
2 Noise – Suitable Separation Between Housing and Other Noise Sensitive Activities and Major Noise					
Sources (example:	aircraft, highway	s and railroads			
□ No Impact		🗆 Permit	Current Conditions:		
□ Beneficial	□ Indirect	□ Mitigation	The project location will take place within a utility easement area		
□ <mark>Adverse</mark>	Cumulative	🗆 <mark>NA</mark>	that is comprised of previously disturbed and undeveloped		
			grasslands.		
			Preferred Alternative Environmental Narrative: There		
			may be temporary increases in noise activity during		
			construction. There may be low vibrational humming		
			associated with the mechanical aspects of the solar		
			panels.		
4. Historic Propert	ies, Cultural, and	Archaeological	Resources		
No Impact	Direct	🗆 Permit	Current Conditions:		
Beneficial	Indirect	□ Mitigation	The project location will take place within a utility easement area		
□ Adverse	Cumulative	🗆 NA	that is comprised of previously disturbed and undeveloped		
			grasslands.		
			Preferred Alternative Environmental Narrative:		
			Increases most a rederally required cultural resources		
			assessment needed for this property, but those		
			sources utilized to fund the preferred alternative		
			The Montana Cultural Resources Database Man		
			Lavers were reviewed for Historical Sites Present and		
			Inventoried Sites Present, which were not present		
			on this site.		
			Montana Cultural Resources Database- State Historic		
			Preservation Office		

			Samantha McGowen, Montana SHPO Review and
			Compliance Team (contacted by Tetra Tech
			personnel via phone call on 4-29-2025).
5. Changes in Dem	ographic (Popula	tion) Character	istics (example: quantity, distribution, density)
No Impact	Direct	🗆 Permit	Current Conditions:
□ Beneficial	Indirect	□ Mitigation	The project location will take place within a utility easement area
□ Adverse	Cumulative	🗆 NA	that is comprised of previously disturbed and undeveloped
			grasslands.
			Preferred Alternative Environmental Narrative:
			The preferred alternative is unlikely to impact the demographics within Panchview Estates
6. General Housing	g Conditions – Ou	ality Quantity	Affordability
			Current Conditions:
			The project location will take place within a utility easement area
			that is comprised of previously disturbed and undeveloped
			grasslands.
			Preferred Alternative Environmental Narrative:
			The preferred alternative is unlikely to impact the general
			housing conditions within Ranchview Estates.
7. Businesses or R	esidents (example	e: loss of, displa	acement, or relocation)
No Impact	🗆 Direct	🗆 Permit	Current Conditions:
Beneficial	Indirect	□ Mitigation	The project location will take place within a utility easement area
□ Adverse	Cumulative	🗆 NA	that is comprised of previously disturbed and undeveloped
			grasslands.
			Preferred Alternative Environmental Narrative:
			of displacement or relocation of residents
8. Public Health ar	nd Safety		of, displacement of relocation of residents.
		□ Permit	Current Conditions:
		Mitigation	The project location will take place within a utility easement area
			that is comprised of previously disturbed and undeveloped
			grasslands.
			Preferred Alternative Environmental Narrative:
			The preferred alternative will introduce temporary construction
			health and safety concerns. Worker hazards can be mitigated
			through safe work practices applicable to the nature of the work.
			The solar paneled area will be fenced and inaccessible from public
			safety.
9. Local Employme	ent – Quantity or	Distribution of	Employment, Economic Impact
□ No Impact	Direct	🗆 Permit	Current Conditions:
□ Beneficial	□ Indirect	□ Mitigation	The project location will take place within a utility easement area
□ Adverse	Cumulative		that is comprised of previously disturbed and undeveloped
			grasslands
			Preferred Alternative Environmental Narrative:
			The preferred alternative is unlikely to impact the quantity or
		 	distribution of employment or economic impact.
10. Income Patter	ns – Economic Im	pact	

	□ Direct	🗆 Permit	Current Conditions:
Reneficial		□ Mitigation	The project location will take place within a utility easement area
			that is comprised of previously disturbed and undeveloped
			grasslands
			Preferred Alternative Environmental Narrative:
			The preferred alternative is unlikely to impact the income
	_		patterns of the Ranchview Estates community.
11. Local and State	e Tax Base and Re	venues	
No Impact	Direct	🗆 Permit	Current Conditions:
□ Beneficial	□ Indirect	□ Mitigation	The project location will take place within a utility easement area
□ Adverse	Cumulative	🗆 NA	that is comprised of previously disturbed and undeveloped
			grasslands
			Preferred Alternative Environmental Narrative:
			The preferred alternative is unlikely to impact local
12.0			and state based taxes and revenues.
12. Community an	d Government Se	ervices and Fac	lifties (example: educational facilities; health and medical
services and facilit	lies; police; emer	gency medical s	services; and parks, playgrounds and open
space)	1	r	·
No Impact	Direct	🗆 Permit	Current Conditions:
Beneficial	Indirect	□ Mitigation	The project location will take place within a utility easement area
□ Adverse	Cumulative	🗆 NA	that is comprised of previously disturbed and undeveloped
			grasslands
			Preferred Alternative Environmental Narrative:
			The preferred alternative is unlikely to impact community and
			government services and facilities.
13. Commercial ar	d Industrial Facili	ities – Producti	on and Activity, Growth or Decline
13. Commercial ar	d Industrial Facili	i ties – Producti	on and Activity, Growth or Decline Current Conditions:
13. Commercial ar	d Industrial Facili	i ties – Producti	on and Activity, Growth or Decline <u>Current Conditions:</u> The project location will take place within a utility easement area
13. Commercial ar	d Industrial Facili	i ties – Producti	on and Activity, Growth or Decline Current Conditions: The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped
13. Commercial ar No Impact Beneficial Adverse 	d Industrial Facili Direct Indirect Cumulative	ities – Producti	government services and facilities. on and Activity, Growth or Decline <u>Current Conditions:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands
13. Commercial ar No Impact Beneficial Adverse 	d Industrial Facili Direct Indirect Cumulative	ities – Producti	on and Activity, Growth or Decline <u>Current Conditions:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands <u>Preferred Alternative Environmental Narrative:</u>
13. Commercial ar	d Industrial Facili Direct Indirect Cumulative	i ties – Producti Permit Mitigation NA	Current Conditions: The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands Preferred Alternative Environmental Narrative: The preferred alternative is unlikely to impact
13. Commercial ar No Impact Beneficial Adverse 	nd Industrial Facili Direct Indirect Cumulative	ities – Producti	government services and facilities. on and Activity, Growth or Decline <u>Current Conditions:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands <u>Preferred Alternative Environmental Narrative:</u> The preferred alternative is unlikely to impact commercial and industrial facilities. There are not
13. Commercial ar	nd Industrial Facili Direct Indirect Cumulative	ities – Producti	government services and facilities. on and Activity, Growth or Decline Current Conditions: The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands Preferred Alternative Environmental Narrative: The preferred alternative is unlikely to impact commercial and industrial facilities. There are not industrial facilities present on the project site.
 13. Commercial ar No Impact Beneficial Adverse 14. Social Structur	es and Mores (ex	ities – Producti	on and Activity, Growth or Decline <u>Current Conditions:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands <u>Preferred Alternative Environmental Narrative:</u> The preferred alternative is unlikely to impact commercial and industrial facilities. There are not industrial facilities present on the project site. ds of social conduct/social conventions)
 13. Commercial ar No Impact Beneficial Adverse 14. Social Structur No Impact 	es and Mores (ex	ities – Producti Permit Mitigation NA NA ample: standar	government services and facilities. on and Activity, Growth or Decline <u>Current Conditions:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands <u>Preferred Alternative Environmental Narrative:</u> The preferred alternative is unlikely to impact commercial and industrial facilities. There are not industrial facilities present on the project site. ds of social conduct/social conventions) <u>Current Conditions:</u>
 13. Commercial ar No Impact Beneficial Adverse 14. Social Structur No Impact Beneficial 	es and Mores (example)	ities – Producti Permit Mitigation NA NA	government services and facilities. on and Activity, Growth or Decline Current Conditions: The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands Preferred Alternative Environmental Narrative: The preferred alternative is unlikely to impact commercial and industrial facilities. There are not industrial facilities present on the project site. ds of social conduct/social conventions) Current Conditions: The project location will take place within a utility easement area
 13. Commercial ar No Impact Beneficial Adverse 14. Social Structur No Impact Beneficial Adverse	es and Mores (example of Indirect	ities – Producti Permit Mitigation NA NA ample: standar Permit Mitigation NA	government services and facilities. on and Activity, Growth or Decline <u>Current Conditions:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands <u>Preferred Alternative Environmental Narrative:</u> The preferred alternative is unlikely to impact commercial and industrial facilities. There are not industrial facilities present on the project site. ds of social conduct/social conventions) <u>Current Conditions:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped
 13. Commercial ar No Impact Beneficial Adverse 14. Social Structur No Impact Beneficial Adverse 	es and Mores (example of Indirect	ities – Producti Permit Mitigation NA NA ample: standar Permit Permit Mitigation NA	government services and facilities. on and Activity, Growth or Decline <u>Current Conditions:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands <u>Preferred Alternative Environmental Narrative:</u> The preferred alternative is unlikely to impact commercial and industrial facilities. There are not industrial facilities present on the project site. ds of social conduct/social conventions) <u>Current Conditions:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands
 13. Commercial ar No Impact Beneficial Adverse 14. Social Structur No Impact Beneficial Adverse 	es and Mores (example of Direct	ities – Producti Permit Mitigation NA ample: standar Permit Mitigation NA	government services and facilities. on and Activity, Growth or Decline <u>Current Conditions:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands <u>Preferred Alternative Environmental Narrative:</u> The preferred alternative is unlikely to impact commercial and industrial facilities. There are not industrial facilities present on the project site. ds of social conduct/social conventions) <u>Current Conditions:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands <u>Preferred Alternative Environmental Narrative:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands Preferred Alternative Environmental Narrative: The areferred alternative Environmental Narrative:
 13. Commercial ar No Impact Beneficial Adverse 14. Social Structur No Impact Beneficial Adverse 	es and Mores (example of Direct	ities – Producti Permit Mitigation NA ample: standar Permit Mitigation NA	government services and facilities. on and Activity, Growth or Decline <u>Current Conditions:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands <u>Preferred Alternative Environmental Narrative:</u> The preferred alternative is unlikely to impact commercial and industrial facilities. There are not industrial facilities present on the project site. ds of social conduct/social conventions) <u>Current Conditions:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands <u>Preferred Alternative Environmental Narrative:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands <u>Preferred Alternative Environmental Narrative:</u> The preferred alternative is unlikely to impact social
13. Commercial ar No Impact Beneficial Adverse 14. Social Structur No Impact Beneficial Adverse	es and Mores (example of Indirect	ities – Producti Permit Mitigation NA ample: standar Permit Mitigation NA	government services and facilities. on and Activity, Growth or Decline <u>Current Conditions:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands <u>Preferred Alternative Environmental Narrative:</u> The preferred alternative is unlikely to impact commercial and industrial facilities. There are not industrial facilities present on the project site. ds of social conduct/social conventions) <u>Current Conditions:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands <u>Preferred Alternative Environmental Narrative:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands <u>Preferred Alternative Environmental Narrative:</u> The preferred alternative is unlikely to impact social structures and mores.
 13. Commercial ar No Impact Beneficial Adverse 14. Social Structur No Impact Beneficial Adverse 15. Land Use Compuses and potential	es and Mores (example)	ities – Producti Permit Mitigation NA ample: standar Permit Mitigation NA e: growth, lanc	government services and facilities. on and Activity, Growth or Decline <u>Current Conditions:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands <u>Preferred Alternative Environmental Narrative:</u> The preferred alternative is unlikely to impact commercial and industrial facilities. There are not industrial facilities present on the project site. ds of social conduct/social conventions) <u>Current Conditions:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands <u>Preferred Alternative Environmental Narrative:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands <u>Preferred Alternative Environmental Narrative:</u> The preferred alternative is unlikely to impact social structures and mores. use change, development activity, adjacent land
 13. Commercial ar No Impact Beneficial Adverse 14. Social Structur No Impact Beneficial Adverse 15. Land Use Compuses and potential No Impact 	es and Mores (example) Direct Cumulative es and Mores (example) Direct Direct Cumulative Antipility (example) conflicts)	ities – Producti Permit Mitigation NA Ample: standar Permit Nitigation NA e: growth, lanc	government services and facilities. on and Activity, Growth or Decline <u>Current Conditions:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands <u>Preferred Alternative Environmental Narrative:</u> The preferred alternative is unlikely to impact commercial and industrial facilities. There are not industrial facilities present on the project site. ds of social conduct/social conventions) <u>Current Conditions:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands <u>Preferred Alternative Environmental Narrative:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands <u>Preferred Alternative Environmental Narrative:</u> The preferred alternative is unlikely to impact social structures and mores. use change, development activity, adjacent land Current Conditions:
 13. Commercial ar No Impact Beneficial Adverse 14. Social Structur No Impact Beneficial Adverse 15. Land Use Compuses and potential No Impact Beneficial 	es and Mores (example Direct Cumulative es and Mores (example Direct Direct Cumulative Direct Cumulative conflicts)	ities – Producti Permit Mitigation NA ample: standar Permit Nitigation NA e: growth, lanc Permit Mitigation	government services and facilities. on and Activity, Growth or Decline <u>Current Conditions:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands <u>Preferred Alternative Environmental Narrative:</u> The preferred alternative is unlikely to impact commercial and industrial facilities. There are not industrial facilities present on the project site. ds of social conduct/social conventions) <u>Current Conditions:</u> The preferred alternative Environmental Narrative: The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands <u>Preferred Alternative Environmental Narrative:</u> The preferred alternative is unlikely to impact social structures and mores. use change, development activity, adjacent land <u>Current Conditions:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands <u>Preferred Alternative Environmental Narrative:</u> The preferred alternative is unlikely to impact social structures and mores. use change, development activity, adjacent land <u>Current Conditions:</u> The project location will take place within a utility easement area
 13. Commercial ar No Impact Beneficial Adverse 14. Social Structur No Impact Beneficial Adverse 15. Land Use Compuses and potential No Impact Beneficial Adverse 	es and Mores (example Direct Cumulative es and Mores (example Direct Direct Cumulative patibility (example conflicts) Direct Direct Cumulative	ities – Producti Permit Mitigation NA ample: standar Permit Mitigation NA e: growth, lanc Permit Mitigation NA	government services and racinities. on and Activity, Growth or Decline Current Conditions: The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands Preferred Alternative Environmental Narrative: The preferred alternative is unlikely to impact commercial and industrial facilities. There are not industrial facilities present on the project site. ds of social conduct/social conventions) Current Conditions: The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands Preferred Alternative Environmental Narrative: The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands Preferred Alternative Environmental Narrative: The preferred alternative is unlikely to impact social structures and mores. use change, development activity, adjacent land Current Conditions: The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped
 13. Commercial ar No Impact Beneficial Adverse 14. Social Structur No Impact Beneficial Adverse 15. Land Use Compuses and potential No Impact Beneficial Adverse 	es and Mores (example Direct Cumulative es and Mores (example Direct Cumulative patibility (example conflicts) Direct Cumulative	ities – Producti Permit Mitigation NA ample: standar Permit Nitigation NA e: growth, lance Permit Nitigation NA	government services and facilities. on and Activity, Growth or Decline Current Conditions: The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands Preferred Alternative Environmental Narrative: The preferred alternative is unlikely to impact commercial and industrial facilities. There are not industrial facilities present on the project site. ds of social conduct/social conventions) Current Conditions: The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands Preferred Alternative Environmental Narrative: The preferred alternative is unlikely to impact social structures and mores. use change, development activity, adjacent land Current Conditions: The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands

			The preferred alternative will be permanently
			changing from undeveloped, unutilized grasslands to
			solar panels. The land will remain developed.
16. Energy Resour	ces – Consumptic	on and Conservation	ation
□ No Impact	Direct	🗆 Permit	Current Conditions:
Beneficial	□ Indirect	□ Mitigation	The project location will take place within a utility easement area
			that is comprised of previously disturbed and undeveloped
			grasslands
			Preferred Alternative Environmental Narrative:
			The preferred alternative will create the addition of
			solar panels which will beneficially contribute
			towards reducing RCWD's energy impact.
17. Solid Waste M	anagement	1	
🗆 No Impact	Direct	🗆 Permit	Current Conditions:
Beneficial	Indirect	□ Mitigation	The project location will take place within a utility easement area
□ Adverse	Cumulative	🗆 NA	that is comprised of previously disturbed and undeveloped
			grasslands
			Preferred Alternative Environmental Narrative:
			The preferred alternative is unlikely to impact solid waste
19 Wastowator T	rootmont - Sowar	La System	management.
			Current Conditioner
			<u>Current Conditions:</u>
□ Beneficial	□ Indirect		that is comprised of proviously disturbed and undeveloped
□ Adverse	Cumulative		grasslands
			Brafarrad Altarnativa Environmental Narrativa:
			The preferred alternative is unlikely to impact the wastewater
			treatment and sewage systems.
19. Storm Water –	- Surface Drainage	2	
🗆 No Impact	Direct	🗆 Permit	Current Conditions:
□ Beneficial	□ Indirect	\Box Mitigation	The project location will take place within a utility easement area
□ Adverse	Cumulative	🗆 NA	that is comprised of previously disturbed and undeveloped
			grasslands
			Preferred Alternative Environmental Narrative:
			The preferred alternative is unlikely to impact the quantity or
20. Community W/	ator Supply		distribution of employment or economic impact.
			Current Conditions:
□ No Impact			The project leastion will take place within a utility accoment area
L Beneficial	□ Indirect		the project location will take place within a utility easement area
□ Adverse	Cumulative	□ <mark>NA</mark>	that is comprised of previously disturbed and undeveloped
			grassianus Droforrad Altarnativo Environmental Narrativo:
			The proferred alternative will directly benefit the
			RCWD by providing access to solar operation offset
			energy consumption of the water delivery system
21 Eiro Protection	L Hazarda		chergy consumption of the water delivery system.
ZI. FILE PROLECTION	i – nazarus		

□ No Impact	□ Direct	🗆 Permit	Current Conditions:
□ Beneficial	□ Indirect	□ Mitigation	The project location will take place within a utility easement area
□ Adverse	Cumulative	🗆 NA	that is comprised of previously disturbed and undeveloped
			grasslands
			Preferred Alternative Environmental Narrative:
			The preferred alternative is unlikely to impact fire
			protection.
22. Cultural Faciliti	es, Cultural Uniqu	ueness and Div	ersity
No Impact	□ Direct	🗆 Permit	Current Conditions:
Beneficial	Indirect	□ Mitigation	The project location will take place within a utility easement area
□ Adverse	□ Cumulative	🗆 NA	that is comprised of previously disturbed and undeveloped
			grasslands
			Preferred Alternative Environmental Narrative:
			The preferred alternative is unlikely to impact
			cultural facilities, uniqueness and diversity.
23. Transportation	Networks and Tr	affic Flow Conf	licts (example: rail; auto including local traffic; airport
runway clear zone	<u>s – avoidance of i</u>	ncompatible la	nd use in airport runway clear zones)
No Impact	□ Direct	🗆 Permit	Current Conditions:
Beneficial	Indirect	□ Mitigation	The project location will take place within a utility easement area
□ Adverse	□ Cumulative	🗆 NA	that is comprised of previously disturbed and undeveloped
			grasslands
			Preferred Alternative Environmental Narrative:
			The preferred alternative is unlikely to impact
			transportation networks.
24. Consistency wi	th Local Ordinand	ces, Resolution	s, or Plans (example: conformance with local comprehensive
plans, zoning, or ca	apital improveme	ent plans.)	
L No Impact	□ Direct	🗆 Permit	Current Conditions:
Beneficial	Indirect	□ Mitigation	The project location will take place within a utility easement area
□ Adverse	Cumulative	🗆 NA	that is comprised of previously disturbed and undeveloped
			grasslands
			Preferred Alternative Environmental Narrative:
			resolutions or plans
25 Private Propert	ty Pights (ovampl	a: a regulatory	action or project activity that reduces minimizes or
eliminates the use	ty rights (Example	e. a regulatory	action of project activity that reduces, minimizes, of
	of private proper	rtv.)	
	of private proper	r ty.)	Current Conditions:
□ No Impact	of private prope	r ty.)	Current Conditions:
□ No Impact □ Beneficial	of private prope	r ty.) Permit Mitigation NA	<u>Current Conditions:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped
 □ No Impact □ Beneficial □ Adverse 	of private prope	r ty.) Permit Mitigation NA 	<u>Current Conditions:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands
 □ No Impact □ Beneficial □ Adverse 	of private prope Direct Indirect Cumulative	r ty.) Permit Mitigation NA 	Current Conditions: The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands Preferred Alternative Environmental Narrative:
 □ No Impact □ Beneficial □ Adverse 	of private prope	r ty.) Permit Mitigation NA	Current Conditions: The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands Preferred Alternative Environmental Narrative: The preferred alternative is unlikely to impact the
☐ No Impact ☐ Beneficial ☐ Adverse	of private prope	r ty.) Permit Mitigation NA	<u>Current Conditions:</u> The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands <u>Preferred Alternative Environmental Narrative:</u> The preferred alternative is unlikely to impact the quantity or distribution of employment or economic
 □ No Impact □ Beneficial □ Adverse 	of private prope	r ty.) □ Permit □ Mitigation □ NA	Current Conditions: The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands Preferred Alternative Environmental Narrative: The preferred alternative is unlikely to impact the quantity or distribution of employment or economic impact.
No Impact Beneficial Adverse	of private prope	r ty.) Permit Mitigation NA : does the proje	Current Conditions: The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands Preferred Alternative Environmental Narrative: The preferred alternative is unlikely to impact the quantity or distribution of employment or economic impact. ect avoid placing lower income households in areas
No Impact Beneficial Adverse 26. Environmental where environment	of private prope	rty.) Permit Mitigation NA does the projonas occurred, si	Current Conditions: The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands Preferred Alternative Environmental Narrative: The preferred alternative is unlikely to impact the quantity or distribution of employment or economic impact. ect avoid placing lower income households in areas uch as adjacent to brownfield sites?)
 No Impact Beneficial Adverse 26. Environmental where environmer 	of private prope	rty.) Permit Mitigation NA does the projented of the p	Current Conditions: The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands Preferred Alternative Environmental Narrative: The preferred alternative is unlikely to impact the quantity or distribution of employment or economic impact. ect avoid placing lower income households in areas uch as adjacent to brownfield sites?) Current Conditions:
No Impact Beneficial Adverse 26. Environmental where environmental On Impact Beneficial	of private proper	rty.) Permit Mitigation NA does the projonas occurred, si Permit Mitigation	Current Conditions: The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands Preferred Alternative Environmental Narrative: The preferred alternative is unlikely to impact the quantity or distribution of employment or economic impact. ect avoid placing lower income households in areas uch as adjacent to brownfield sites?) Current Conditions: The project location will take place within a utility easement area
No Impact Beneficial Adverse 26. Environmental where environmental where environmental Beneficial Adverse	of private proper	rty.) Permit Mitigation NA constant of the projention Permit Mitigation NA	Current Conditions: The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands Preferred Alternative Environmental Narrative: The preferred alternative is unlikely to impact the quantity or distribution of employment or economic impact. ect avoid placing lower income households in areas uch as adjacent to brownfield sites?) Current Conditions: The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped
 No Impact Beneficial Adverse 26. Environmental where environmental where environmental Beneficial Adverse 	of private proper	rty.) Permit Mitigation NA does the projention Permit Mitigation NA	Current Conditions: The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands Preferred Alternative Environmental Narrative: The preferred alternative is unlikely to impact the quantity or distribution of employment or economic impact. ect avoid placing lower income households in areas uch as adjacent to brownfield sites?) Current Conditions: The project location will take place within a utility easement area that is comprised of previously disturbed and undeveloped grasslands

			Preferred Alternative Environmental Narrative: The preferred alternative is unlikely to impact environmental justice.
27. Lead Based Pai structures qualify a	nt and/or Asbest as containing lead	os (example: d d-based paint?)	oes the project replace asbestos-lined pipes? Do any
No Impact	Direct	🗆 Permit	Current Conditions:
□ Beneficial	□ Indirect	□ Mitigation	The project location will take place within a utility easement area
□ Adverse	Cumulative	🗆 NA	that is comprised of previously disturbed and undeveloped
			grasslands
			Preferred Alternative Environmental Narrative:
			The preferred alternative is unlikely to impact lead based paint
			and asbestos.

Additional Information

List all sources of information used to complete the Environmental Checklist. Sources may include studies, plans, documents, or the individuals, organizations, or agencies contacted for assistance. For individuals, groups, or agencies, please include a contact person and phone number. List any scoping documents or meetings and/or public meetings during project development.

The RCWD holds board meetings that were utilized to provide concerns and feedback regarding the solar panel project. The Board will discuss the potential environmental impacts, within the PER's selected alternative, with community members to consider their concerns during the design process. The sources of information used to prepare this environmental checklist are listed within the sections they are applicable to. Depending on the sources of funding, additional information to generate an Environmental Assessment or Environmental Impact Statement may be required.

<u>Below is a list of electronic resources available for data gathering to aid in the development of the</u> <u>Environmental Checklist:</u>

Abandoned Mines (DEQ): <u>https://deq.mt.gov/cleanupandrec/Programs/aml</u> Agricultural Statistics (USDA): <u>USDA - National Agricultural Statistics Service - Data and Statistics</u> Air Quality

- Nonattainment Areas: Plan and Rule Development | Montana DEQ (mt.gov)
- Opening Burning Guidelines: <u>Open Burning | Montana DEQ (mt.gov)</u>

Army Corps of Engineers: <u>http://www.usace.army.mil/Home.aspx</u>

Bureau of Business and Economic Research, UM: <u>http://www.bber.umt.edu/</u> Cadastral (for property ownership info): <u>http://svc.mt.gov/msl/mtcadastral</u> Census Information, MT Dept. of Commerce: <u>http://ceic.mt.gov</u> Conservation Districts, MT: <u>http://macdnet.org/</u> Cultural Records

Montana Historical Society: <u>https://mhs.mt.gov/Shpo/CulturalRecords</u>

DEQ data search tools: Montana DEQ's GIS Portal (mt.gov)

• Including Clean Water Act Info Center, Hazardous Waste Handlers, Petroleum Release Fund Claims, Unpermitted Releases, Underground Storage Tanks, Source Water Protection

EPA Enforcement and Compliance History Online <u>http://echo.epa.gov/</u> Farmland Classification: <u>http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx</u> Fish (Also See Wildlife)

- Montana Fisheries Information System: Montana Fish, Wildlife & Parks GIS Data (arcgis.com)
- Aquatic Invasive Species: <u>Montana FWP AIS Surveys Dashboard 2021 (arcgis.com)</u>
- Floodplain Maps, FEMA: <u>https://msc.fema.gov/portal</u>

Montana Department of Transportation: https://www.mdt.mt.gov/

- Environmental Manual: <u>http://www.mdt.mt.gov/publications/docs/manuals/env/preface.pdf</u>
- Environmental Manual Chapter 29, Permits Required: <u>https://www.mdt.mt.gov/publications/docs/manuals/env/Chapter%2029%20PERMITS%20REQ</u> <u>UIRED.pdf</u>

Montana Board of Oil and Gas Conservation Information System:

- <u>https://dnrc.mt.gov/BOGC/</u> Plants
- Plant database, USDA Natural Resources Conservation Service: <u>http://plants.usda.gov/java</u>
- Plant Species, MT Field Guide: <u>http://fieldguide.mt.gov/default.aspx</u>
- Plant Species of Concern: <u>http://mtnhp.org/SpeciesOfConcern/Default.aspx?AorP=p</u>
- Threatened, Endangered and Rare Plants, USDA: <u>https://plants.usda.gov/home/raritySearch</u>

Soils

- USDA Natural Resource Conservation Service database: <u>https://websoilsurvey.nrcs.usda.gov/app/</u>
- Montana soil and water conservation districts: <u>http://swcdmi.org/</u>

State Historic Preservation Office: <u>http://mhs.mt.gov/Shpo</u>

Tourism, UM – Institute of Tourism & Recreation Research: <u>http://www.itrr.umt.edu</u> Tribal Resources:

- Blackfeet Tribal Environmental Permits: <u>http://www.blackfeetenvironmental.com</u>
- CSKT Natural Resources Department: <u>http://nrd.csktribes.org/</u>
- Montana Office of Indian Affairs: <u>http://tribalnations.mt.gov/</u>

- Tribal Historic Preservation Officer List: <u>Search NATHPO</u>
- Tribal Directory Assessment Tool (TDAT): <u>https://egis.hud.gov/tdat/</u>

Vehicle Traffic Count (MDT): <u>http://www.mdt.mt.gov/publications/datastats/traffic.shtml</u> Water

- Stream Record Extension Facilitator, USGS: <u>USGS | National Water Dashboard</u>
- Streamstats basin characteristics, USGS: <u>http://water.usgs.gov/osw/streamstats/</u>
- Water Resources Division, DNRC: <u>https://dnrc.mt.gov/Water-Resources/ ArcGIS Web Application</u> (<u>mt.gov</u>)
- Water Rights Bureau, DNRC: <u>https://dnrc.mt.gov/Water-Resources/Water-Rights/</u>
- Water Right Query System, DNRC: DNRC Water Right Query System (mt.gov)
- Wetlands database, USFWS: <u>http://www.fws.gov/wetlands/Data/mapper.html</u>
- Wild and Scenic Rivers: <u>http://www.rivers.gov/montana.php</u>

Wildlife

- Animal Species, MT Field Guide: <u>http://fieldguide.mt.gov/default.aspx</u>
- Animal Species of Concern: <u>http://mtnhp.org/SpeciesOfConcern/Default.aspx?AorP=a</u>
- Aquatic Invasive Species: <u>Montana FWP AIS Surveys Dashboard 2021 (arcgis.com)</u>
- Critical Habitat Mapper, USFWS: <u>http://ecos.fws.gov/crithab/</u>
- Crucial Areas Planning System/Habitat Assessment Tool: <u>Habitat MT (HB 526) Funded Lands</u> (arcgis.com)
- FWP Contact Map: <u>http://fwp.mt.gov/gis/maps/contactUs/ (includes biologist responsibility areas)</u>
- Maps and GIS Data, FWP: <u>Montana Fish, Wildlife & Parks GIS Data (arcgis.com)</u>
- Sage grouse management, FWP: <u>Montana Fish, Wildlife & Parks GIS Data : Sage-grouse</u> <u>Habitat/Current Distribution (Montana) : Sage-grouse Habitat/Current Distribution (Montana)</u> (arcgis.com)
- Sage grouse habitat conservation program, DNRC: <u>http://sagegrouse.mt.gov/</u>
- Sage grouse habitat map: <u>https://sagegrouse.mt.gov/ProgramMap</u>

APPENDIX C: SITE PHOTOGRAPHS

RANCHVIEW COUNTY WATER DISTRICT LEWIS AND CLARK COUNTY, MONTANA TETRA TECH PROJECT NO. 117-750919-24001

RANCHVIEW COUNTY WATER DISTRICT LEWIS AND CLARK COUNTY, MONTANA TETRA TECH PROJECT NO. 117-750919-24001

APPENDIX D: DESIGN DOCUMENTS

PVsyst - Simulation report

Grid-Connected System

Project: Ranchview County Water Dist.

Variant: RCWD_SAT Tracking system System power: 66.1 kWp Helena Valley Northwest - United States

Variant: RCWD_SAT

Tetra Tech Inc.

PVsyst V8.0.7 VC4, Simulation date: 06/03/25 10:46 with V8.0.7

	Project s	ummary			
Geographical Site Helena Valley Northwest United States	Situation Latitude Longitude Altitude Time zone	46.72 °N -112.02 °W 1152 m UTC-7	Project settings Albedo	0.20	
Weather data Helena Valley Northwest Meteonorm 8.2 (1991-2005) - Synthetic					
	System s	summary ———			
Crid Connected System	Tracking ovetom	, and y			
Orientation #1 Tracking plane, horizontal N-S axis Axis azimuth 0° Phi min / max/+ 55° Diffuse shading all trackers Tracking algorithm Astronomic calculation System information PV Array Nh of madulos	Near Shadings According to strings : Electrical effect	Slow (simul.) 100 %	User's needs Unlimited load (grid)	1 unit	
ND. OF MODULES	66.1 kWp	ND. OF UNITS		T UNIL 50.0 kWac	
	00.1 KWp	Pnom ratio		1.322	
	Results s	summary ———			
Produced Energy 112.90 MWh/year	Specific production	1709 kWh/kWp/year	Perf. Ratio PR	80.92 %	
	Table of	contents			
Project and results summary General parameters, PV Array Characteristic Near shading definition - Iso-shadings diagra Main results Loss diagram Predef. graphs	cs, System losses มm				2 3 5 6 7 8

PVsyst V8.0.7 VC4, Simulation date: 06/03/25 10:46 with V8.0.7

Project: Ranchview County Water Dist.

Variant: RCWD_SAT

Tetra Tech Inc.

	General r	parameters —		
Grid-Connected System	Tracking system			
Orientation #1 Tracking plane, horizontal N-S axis Axis azimuth 0 ° Phi min / max/+ 55 ° Diffuse shading all trackers Tracking algorithm Astronomic calculation	Trackers configurati Nb. of trackers Tracking plane, horiz Shading limit angles Phi limits	on 7 units contal N-S axis ; +/- 78.2 °	Sizes Tracker Spacing Collector width Average GCR	12.0 m 2.46 m 20.6 %
Models usedTranspositionPerezDiffusePerez, MeteonormCircumsolarseparate	Horizon Free Horizon		Near Shadings According to strings : Slov Electrical effect	v (simul.) 100 %
User's needs Unlimited load (grid)				
	PV Array Cl	haracteristics —		
PV module Manufacturer Hanwha (Model Q.Peak-Duo-XL-G11S.3 / BF (Original PVsyst database) Unit Nom. Power Number of PV modules Nominal (STC) Modules 7 string At operating cond. (50°C) Pmpp U mpp I mpp	Q Cells =G-590 590 Wp 112 units 66.1 kWp ng x 16 In series 60.4 kWp 656 V 92 A	Inverter Manufacturer Model Sunny T (Original PVsyst d Unit Nom. Power Number of inverters Total power Operating voltage Pnom ratio (DC:AC) Power sharing within t	SMA Tripower STP50-US-41-Core1 atabase) 50.0 1 50.0 150-800 1.32 his inverter) kWac unit) kWac) V
Total PV power Nominal (STC) Total Module area	66 kWp 112 modules 313 m²	Total inverter power Total power Number of inverters Pnom ratio	50 1 1.32) kWac unit
	Arrav	losses		
Array Soiling LossesLoss Fraction3.0 %	Thermal Loss factor Module temperature Uc (const) Uv (wind)	or according to irradiance 29.0 W/m²K 0.0 W/m²K/m/s	DC wiring losses Global array res. Loss Fraction	118 m 1.5 % at STC
Serie Diode LossVoltage drop0.7 VLoss Fraction0.1 % at STC	LID - Light Induce Loss Fraction	d Degradation 2.0 %	Module Quality Loss Loss Fraction	-0.4 %
Module mismatch lossesLoss Fraction2.0 % at MPP				

IAM loss factor

Incidence effect (IAM): Fresnel, AR coating, n(glass)=1.526, n(AR)=1.290

0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	0.999	0.987	0.963	0.892	0.814	0.679	0.438	0.000

Project: Ranchview C	county Water Dist.
----------------------	--------------------

PVsyst V8.0.7 VC4, Simulation date: 06/03/25 10:46 with V8.0.7 Variant: RCWD_SAT

		System	losses -			
Unavailability of the	system	Auxiliaries loss				
Time fraction	2.0 %	Night aux. cons.	200 W			
	7.3 days,					
	3 periods					
Inv. output line up to	Inv. output line up to injection point					
Inverter voltage		480 Vac tri				
Loss Fraction		0.00 % at STC				
Inverter: Sunny Tripowo	Inverter: Sunny Tripower STP50-US-41-Core1					
Wire section (1 Inv.)	Copper 1 x	3 x 25 mm²				
Wires length		0 m				

Variant: RCWD_SAT

Project: Ranchview County Water Dist. Variant: RCWD_SAT PVsyst V8.0.7 Tetra Tech Inc. VC4, Simulation date: 06/03/25 10:46 with V8.0.7 Main results System Production Produced Energy 112.90 MWh/year Specific production 1709 kWh/kWp/year Perf. Ratio PR 80.92 % Economic evaluation LCOE Investment Yearly cost Global 587,340.00 USD Annuities 0.00 USD/yr Energy cost 0.02 USD/kWh 8.89 USD/Wp Specific Run. costs 2,550.00 USD/yr Payback period Unprofitable Performance Ratio PR Normalized productions (per installed kWp) 14 1.2 Lc: Collection Loss (PV-array losses) 0.88 kWh/kWp/day 1.1 PR: Performance Ratio (Yf / Yr): 0.809 12 Normalized Energy [kWh/kWp/day] Ls: System Loss (inverter, ...) 1.0 0.22 kWh/kWp/day Yf: Produced useful energy (inve 0.9 putput) 4.68 kWh/kWp/day 10 PR 0.8 Performance Ratio 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0.0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec. Balances and main results

	GlobHor	DiffHor	T_Amb	GlobInc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	ratio
January	45.7	19.52	-4.60	70.1	64.2	4.19	4.00	0.864
February	66.3	25.80	-3.55	100.4	94.1	6.06	5.84	0.880
March	110.5	44.43	1.98	162.7	153.4	9.50	9.19	0.855
April	148.2	59.26	6.69	212.8	201.5	12.15	11.77	0.837
May	181.3	71.69	11.99	251.2	238.5	13.95	12.85	0.774
June	201.5	74.26	16.75	283.0	268.2	15.29	14.83	0.793
July	221.4	59.49	23.16	324.0	307.6	17.15	16.63	0.777
August	178.9	64.99	21.04	256.0	243.3	13.91	13.48	0.797
September	128.6	44.07	14.82	190.0	179.9	10.67	10.32	0.822
October	82.3	36.14	7.35	122.0	114.7	7.04	6.37	0.790
November	50.8	21.23	0.38	77.1	71.2	4.51	4.31	0.847
December	40.3	17.99	-4.61	62.0	57.1	3.77	3.32	0.810
Year	1455.8	538.86	7.69	2111.4	1993.7	118.19	112.90	0.809
<u></u>								

Legends

GlobHor	Global horizontal irradiation	EArray	Effective energy at the output of the array
DiffHor	Horizontal diffuse irradiation	E_Grid	Energy injected into grid
T_Amb	Ambient Temperature	PR	Performance Ratio
GlobInc	Global incident in coll. plane		
GlobEff	Effective Global, corr. for IAM and shadings		

Variant: RCWD_SAT

PVsyst V8.0.7 VC4, Simulation date: 06/03/25 10:46 with V8.0.7

Tetra Tech Inc.

Loss diagram 1456 kWh/m² **Global horizontal irradiation** +45.0% Global incident in coll. plane ⇒-1.6% Near Shadings: irradiance loss -3.0% Soiling loss factor -1.1% IAM factor on global 1994 kWh/m² * 313 m² coll. Effective irradiation on collectors PV conversion efficiency at STC = 21.13% 131.72 MWh Array nominal energy (at STC effic.) -0.5% PV loss due to irradiance level -2.6% PV loss due to temperature 9-1.3% Shadings: Electrical Loss acc. to strings Module quality loss **√**+0.4% €2.0% (LID - Light induced degradation \$-2.0% Module array mismatch loss €1.1% (♦ Ohmic wiring loss 120.04 MWh Array virtual energy at MPP \$-2.6% Inverter Loss during operation (efficiency) € -1.6% Inverter Loss over nominal inv. power ₩0.0% Inverter Loss due to max. input current ₩0.0% Inverter Loss over nominal inv. voltage ₩0.0% Inverter Loss due to power threshold ₩0.0% Inverter Loss due to voltage threshold ₩0.0% Night consumption 115.05 MWh Available Energy at Inverter Output ♥-0.7% Auxiliaries (fans, other) ₩0.0% AC ohmic loss €,1.2% System unavailability 112.90 MWh Energy injected into grid

Variant: RCWD_SAT

Variant: RCWD_SAT

Tetra Tech Inc.

PVsyst V8.0.7 VC4, Simulation date: 06/03/25 10:46 with V8.0.7

PVsyst - Simulation report

Grid-Connected System

Project: Ranchview County Water Dist. Variant: RCWD_FIXED Sheds on ground System power: 66.1 kWp Helena Valley Northwest - United States

Variant: RCWD_FIXED

Tetra Tech Inc.

PVsyst V8.0.7 VC3, Simulation date: 06/03/25 10:53 with V8.0.7

		Project s	summary ———			
Geographical Site		Situation		Project settings		
Helena Valley Northw	vest	Latitude	46.72 °N	Albedo	0.20	
United States		Longitude	-112.02 °W			
		Altitude	1152 m			
		l ime zone	UTC-7			
Weather data Helena Valley Northwe Meteonorm 8.2 (1991-	est 2005) - Synthetic					
		System s	summary			
Grid-Connected Sy	stem	Sheds on ground	5			
Orientation #1		Near Shadings		User's needs		
Fixed plane		According to strings :	Slow (simul.)	Unlimited load (grid)		
Tilt/Azimuth	15/0°	Electrical effect	100 %			
System information	I					
PV Array		440 "	Inverters		a 11	
ND. OF MODULES			ND. OF UNITS			
Phom lolai		66.1 куур	Phom total Phom ratio		50.0 KWac 1 322	
		Results s	summary ———			
Produced Energy	88217 kWh/year	Specific production	1335 kWh/kWp/year	Perf. Ratio PR	81.03 %	
		Table of	contents			
Project and results sur	mmary					2
General parameters, F	PV Array Characteristic	s, System losses				3
Near shading definition	n - Iso-shadings diagra	m				5
Main results						6
Loss diagram						7
Predef. graphs						8

PVsyst V8.0.7 VC3, Simulation date: 06/03/25 10:53 with V8.0.7

Project: Ranchview County Water Dist.

Variant: RCWD_FIXED

Tetra Tech Inc.

Grid-Connected S	system	Sheds on ground			
Orientation #1					
Fixed plane		Sheds configuration		Sizes	
Tilt/Azimuth	15 / 0 °	Nb. of sheds	7 units	Sheds spacing	5.38 m
		Set of tables		Collector width	2.46 m
		Shading limit angle		Average GCR	45.7 %
		Limit profile angle	12 °		
Models used		Horizon		Near Shadings	
Transposition	Perez	Free Horizon		According to strings :	Slow (simul.)
Diffuse Perez,	Meteonorm			Electrical effect	100 %
Circumsolar	separate				

Unlimited load (grid)

	r v Allay		
PV module		Inverter	
Manufacturer	Hanwha Q Cells	Manufacturer	SMA
Model Q.Peak-D	0uo-XL-G11S.3 / BFG-590	Model Sunny Tripower S	TP50-US-41-Core1
(Original PVsyst datal	base)	(Original PVsyst database)	
Unit Nom. Power	590 Wp	Unit Nom. Power	50.0 kWac
Number of PV modules	112 units	Number of inverters	1 unit
Nominal (STC)	66.1 kWp	Total power	50.0 kWac
Modules	7 string x 16 In series	Operating voltage	150-800 V
At operating cond. (50°C)	Pnom ratio (DC:AC)	1.32
Pmpp	60.4 kWp	Power sharing within this inverte	er
U mpp	656 V		
l mpp	92 A		
Total PV power		Total inverter power	
Nominal (STC)	66 kWp	Total power	50 kWac
Total	112 modules	Number of inverters	1 unit
Module area	313 m ²	Pnom ratio	1.32

				Arrav losses				
Array Soiling Loss Fraction	Losses 3	.0 %	Thermal Log Module temp	ss factor erature accordin	ig to irradiance	DC wiring Global arra	losses y res.	118 m
			Uc (const) Uv (wind)	2	29.0 W/m²K 0.0 W/m²K/m/s	Loss Fracti	on	1.5 % at STC
Serie Diode I	Loss		LID - Light	Induced Degra	adation	Module Q	uality Loss	
Voltage drop	0	.7 V	Loss Fractior	ו	2.0 %	Loss Fracti	on	-0.4 %
Loss Fraction	0	.1 % at STC						
Module mism Loss Fraction	atch losses 2	.0 % at MPP						
IAM loss factor Incidence effect	or t (IAM): Fresnel	, AR coating, n(glass)=1.526, n(AR)=1.290				
0°	30°	50°	60°	70°	75°	80°	85°	90°

 0°
 30°
 50°
 60°
 70°
 75°
 80°
 85°
 90°

 1.000
 0.999
 0.987
 0.963
 0.892
 0.814
 0.679
 0.438
 0.000

	F	Project: Ranchview	County Wa	ter Dist.	
		Variant: RCV	VD_FIXED		
PVsyst V8.0.7 VC3, Simulation date: 06/03/25 10:53 with V8.0.7		Tetra Te	ch Inc.		
		System	losses		
Unavailability of the s	Unavailability of the systemAuxiliTime fraction2.0 %Night				
Time fraction			200 W		
	7.3 days,				
	3 periods				
		AC wiring	llosses		
Law and the same tail			,		
Inv. output line up to I	njection point				
Inverter voltage		480 Vac tri			
Loss Fraction		0.00 % at STC			
Inverter: Sunny Tripower	STP50-US-41-Co	ore1			
Wire section (1 Inv.)	Copper 1 x	k 3 x 25 mm²			
Wires length		0 m			

Variant: RCWD_FIXED

Tetra Tech Inc.

PVsyst V8.0.7 VC3, Simulation date: 06/03/25 10:53 with V8.0.7

Variant: RCWD_FIXED

PVsyst V8.0.7 VC3, Simulation date: 06/03/25 10:53

Tetra Tech Inc.

with V8.0.7

Main results

System Production Produced Energy

88217 kWh/year

Specific production Perf. Ratio PR

> 1.2 1,1

1.0

0.9

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.0

Jan Feb

Mar

Performance Ratio PR

1335 kWh/kWp/year 81.03 %

Oct Nov Dec

Performance Ratio PR

PR: Performance Ratio (Yf / Yr): 0.810

Apr May Jun

Jul Aug Sep

Balances and main results

	GlobHor	DiffHor	T_Amb	GlobInc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	kWh	kWh	ratio
January	45.7	19.52	-4.60	67.5	62.6	4102	3910	0.877
February	66.3	25.80	-3.55	87.8	82.1	5370	5163	0.890
March	110.5	44.43	1.98	132.0	123.8	7824	7553	0.866
April	148.2	59.26	6.69	162.2	152.4	9406	8445	0.788
May	181.3	71.69	11.99	188.3	177.2	10606	10269	0.826
June	201.5	74.26	16.75	203.8	192.1	11311	10962	0.814
July	221.4	59.49	23.16	227.7	214.9	12263	10743	0.714
August	178.9	64.99	21.04	192.4	180.9	10588	9543	0.751
September	128.6	44.07	14.82	149.7	140.8	8470	8178	0.826
October	82.3	36.14	7.35	103.3	96.7	6055	5821	0.853
November	50.8	21.23	0.38	71.4	66.5	4269	4077	0.864
December	40.3	17.99	-4.61	61.4	56.8	3738	3552	0.876
Year	1455.8	538.86	7.69	1647.6	1546.8	94003	88217	0.810

Legends

-			
GlobHor	Global horizontal irradiation	EArray	Effective energy at the output of the array
DiffHor	Horizontal diffuse irradiation	E_Grid	Energy injected into grid
T_Amb	Ambient Temperature	PR	Performance Ratio
GlobInc	Global incident in coll. plane		
GlobEff	Effective Global, corr. for IAM and shadings		

Variant: RCWD_FIXED

PVsyst V8.0.7 VC3, Simulation date: 06/03/25 10:53 with V8.0.7 Variant: RCWD_FIXED

PVsyst - Simulation report

Grid-Connected System

Project: Ranchview County Water Dist. Variant: RCWD_FIXED-W/bess Sheds on ground System power: 86.4 kWp Helena Valley Northwest - United States

Variant: RCWD_FIXED-W/bess

PVsyst V8.0.7 VC6, Simulation date: 06/03/25 10:50 with V8.0.7

Project s	summary ———			
Situation Latitude Longitude Altitude Time zone	46.72 °N -112.02 °W 1152 m UTC-7	Project settings Albedo	0.20	
System s	summary —			
Sheds on ground	Sammal y			
Near Shadings According to strings : Electrical effect	Slow (simul.) 100 %	User's needs Unlimited load (grid)		
180 units 86.4 kWp	Inverters Nb. of units Pnom total		5 units 48.0 kWac	
	Pnom ratio		1.800	
Results :	summary ———			
ar Specific production	1149 kWh/kWp/year	Perf. Ratio PR	69.71 %	
Table of	contents			
stics, System losses				2 3 5 6 7 8
	Situation Latitude Longitude Altitude Time zone System s Sheds on ground Near Shadings According to strings : Electrical effect 180 units 86.4 kWp Results s ar Specific production Table of stics, System losses gram	Situation Latitude 46.72 °N Longitude -112.02 °W Altitude 1152 m Time zone UTC-7 Sheds on ground Near Shadings According to strings : Slow (simul.) Electrical effect Electrical effect 100 % Inverters 180 units Nb. of units Nb. of units 86.4 kWp Pnom total Pnom ratio Results summary ar Specific production 1149 kWh/kWp/year Stics, System losses	Project summary Project settings Latitude 46.72 °N Albedo Longitude -112.02 °W Albedo Altitude 1152 m Time zone Time zone UTC-7 UTC-7 Sheds on ground Near Shadings User's needs According to strings : Slow (simul.) Electrical effect 100 % Electrical effect 100 % Unlimited load (grid) Phom ratio Pnom total Pnom ratio Results summary Ar Specific production 1149 kWh/kWp/year Perf. Ratio PR Table of contents Stics, System losses	Situation Project settings Latitude 46.72 °N Albedo 0.20 Longitude -112.02 °W Albedo 0.20 Altitude 1152 m 1152 m 1152 m Time zone UTC-7 UTC-7 0.20 System summary Sheds on ground User's needs According to strings : Slow (simul.) Unlimited load (grid) Electrical effect 100 % Inverters 180 units Nb. of units 5 units 86.4 kWp Pnom total 48.0 kWac Pnom ratio 1.800 1.800 Mark Table of contents 5 stics, System losses gram 1149 kWh/kWp/year Perf. Ratio PR 69.71 %

Variant: RCWD_FIXED-W/bess

Tetra Tech Inc.

PVsyst V8.0.7
VC6, Simulation date
06/03/25 10:50
with V8.0.7

General parameters							
Grid-Connected System		Sheds on ground					
Orientation #1							
Fixed plane		Sheds configuration		Sizes			
Tilt/Azimuth	15 / 0 °	Nb. of sheds	20 units	Sheds spacing	5.08 m		
		Set of tables		Collector width	2.22 m		
		Shading limit angle		Average GCR	43.6 %		
		Limit profile angle	11 °				
Models used		Horizon		Near Shadings			
Transposition	Perez	Free Horizon		According to strings :	Slow (simul.)		
Diffuse Perez	z, Meteonorm			Electrical effect	100 %		
Circumsolar	separate						

User's needs

Unlimited load (grid)

	PV Array	Characteristics	
PV module		Inverter	
Manufacturer	Hanwha Q Cells	Manufacturer	SMA
Model	Q.Peak-Duo-XL-G10-480	Model	Sunny Boy Smart Energy
(Original PVsyst data	abase)	(Custom paramete	rs definition)
Unit Nom. Power	480 Wp	Unit Nom. Power	9.60 kWac
Number of PV modules	180 units	Number of inverters	5 units
Nominal (STC)	86.4 kWp	Total power	48.0 kWac
Modules	20 string x 9 In series	Operating voltage	168-480 V
At operating cond. (50°C	C)	Pnom ratio (DC:AC)	1.80
Pmpp	79.0 kWp	Power sharing within the	nis inverter
U mpp	367 V		
I mpp	215 A		
Total PV power		Total inverter power	
Nominal (STC)	86 kWp	Total power	48 kWac
Total	180 modules	Number of inverters	5 units
Module area	417 m ²	Pnom ratio	1.80

		Array los	ses		
Array Soiling Losses		Thermal Loss factor		DC wiring losses	
Loss Fraction	3.0 %	Module temperature acco	ording to irradiance	Global array res.	38 m
		Uc (const)	29.0 W/m ² K	Loss Fraction	2.0 % at STC
		Uv (wind)	0.0 W/m ² K/m/s		
Serie Diode Loss		LID - Light Induced D	egradation	Module Quality Loss	
Voltage drop	0.7 V	Loss Fraction	2.0 %	Loss Fraction	-0.8 %
Loss Fraction	0.2 % at STC				
Module mismatch losses	S				
Loss Fraction	2.0 % at MPP				
IAM loss factor Incidence effect (IAM): Fres	nel, AR coating, n(glass)=1.526, n(AR)=1.290			

0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	0.999	0.987	0.963	0.892	0.814	0.679	0.438	0.000

	F	Project: Ranchview County Water Dist.			
		Variant: RCWD_	FIXED-W/bess		
PVsyst V8.0.7 VC6, Simulation date: 06/03/25 10:50 with V8.0.7		Tetra Te	ch Inc.		
		System	losses —		
Unavailability of the s	ystem	Auxiliaries loss			
Time fraction	2.0 %	Night aux. cons.	1000 W		
	7.3 days,				
	3 periods				
		AC wiring	losses –		
Inv. output line up to i	njection point				
Inverter voltage		240 Vac mono			
Loss Fraction		0.00 % at STC			
Inverter: Sunny Boy Sma	art Energy				
Wire section (5 Inv.)	Copper 5 >	(2 x 16 mm ²			
Average wires length		0 m			

Variant: RCWD_FIXED-W/bess

PVsyst V8.0.7 VC6, Simulation date: 06/03/25 10:50 with V8.0.7

System Production Produced Energy Tetra Tech Inc.

99232 kWh/year Spe

Specific production Perf. Ratio PR

1.2

1.0

0.9

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.0

Jan Feb Mar

Performance Ratio PR

1149 kWh/kWp/year 69.71 %

Jul Aug Sep Oct Nov Dec

Performance Ratio PR

PR: Performance Ratio (Yf / Yr): 0.697

Apr May Jun

Balances and main results

	GlobHor	DiffHor	T_Amb	GlobInc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	ratio
January	45.7	19.52	-4.60	67.5	62.6	5.37	4.28	0.735
February	66.3	25.80	-3.55	87.8	82.1	6.72	5.79	0.763
March	110.5	44.43	1.98	132.0	123.8	9.38	7.28	0.638
April	148.2	59.26	6.69	162.2	152.5	11.01	10.14	0.723
May	181.3	71.69	11.99	188.3	177.3	12.26	11.41	0.702
June	201.5	74.26	16.75	203.8	192.2	13.13	12.34	0.701
July	221.4	59.49	23.16	227.7	214.9	13.94	13.10	0.666
August	178.9	64.99	21.04	192.4	181.0	12.48	11.59	0.697
September	128.6	44.07	14.82	149.7	140.8	10.10	9.18	0.709
October	82.3	36.14	7.35	103.3	96.8	7.68	6.19	0.693
November	50.8	21.23	0.38	71.4	66.5	5.56	4.54	0.735
December	40.3	17.99	-4.61	61.4	56.8	4.90	3.40	0.642
Year	1455.8	538.86	7.69	1647.5	1547.3	112.54	99.23	0.697

Legends

GlobHo	or Global horizontal irradiation	EArray	Effective energy at the output of the array
DiffHor	Horizontal diffuse irradiation	E_Grid	Energy injected into grid
T_Amb	Ambient Temperature	PR	Performance Ratio
GlobIn	c Global incident in coll. plane		
GlobEf	f Effective Global, corr. for IAM and shadings		

PVsyst V8.0.7

VC6, Simulation date:

Project: Ranchview County Water Dist.

Variant: RCWD_FIXED-W/bess

Tetra Tech Inc.

Project: Ranchview County Water Dist.

Variant: RCWD_FIXED-W/bess

PVsyst V8.0.7 VC6, Simulation date: 06/03/25 10:50 with V8.0.7

Tetra Tech Inc.

RANCHVIEW COUNTY WATER DISTRICT -SOLAR PLANT CONCEPTUAL DESIGN:

SCENARIO #1 - SINGLE-AXIS TRACKER PV RACKING

1 GENERAL ARRANGEMENT AND LAYOUT PLAN SCALE: 1" = 100'

3/2025 5:06:47 PM - C:\USERS\ALAN.TENNERY\DESKTOP\RCWD_UPDATE\E-101 GENERAL ARRANGEMENT AND LAYOUT PLAN - SAT.DWG - TENNERY, ALAN

0 100' 200'

1. THIS IS ELECTF MANUF DRAWII RACKIN 2. SITE AC EXISTIN DRAWII ROAD I 3. UNDER SHALL TRENC 4. THE UN CONCE DECIMA	RAL NOTES: A CONCEPTUAL LAYOUT FOR RICAL DESIGN, SEE THE RACKIN ACTURER LAYOUT AND SHOP NGS FOR MORE DETAIL ON IG STRUCTURES. CESS WILL BE THROUGH IG ACCESS DRIVES. SEE CIVIL NGS FOR PROPOSED SITE ACCE DETAILS. GROUND ELECTRICAL AND COM BE INSTALLED THROUGH HING. ITS OF THE DIMENSIONS IN THI PTUAL LAYOUT ARE IN FEET, AL FORMAT.	IG ESS MM S	
LEGEN			041141
	INVERTER	·····	CANAL
	SINGLE-AXIS TRACKER		50' WATER SETBACK
	PARCEL BOUNDARY		20' PARCEL SETBACK
	- FENCE) \$0 \$0 \$0 \$0 \$	EXISTING ACCESS ROADS
<u> </u>			
<u> </u>	– PV AREA		DC TRENCH ROUTING

7

SITE CO	NDITIONS
METEO STATION	HELENA, MT, USA (WMO: 727720)
EXTREME ANNUAL LOW TEMP (°C)	-28.3
AVERAGE HIGH AMBIENT TEMP (°C)	37
TILT	+/- 55
SYSTE	M SPECS
DC CAPACITY (kW)	66,08
DC CAPACITY - BSTC (kW)	72.28
AC CAPACITY (KVA)	50
DC/AC RATIO (%)	1,32
DC/AC RATIO - BSTC (%)	1,45
MODULE MODEL	Q.PEAK DUO XL-G11S.3 / BFG 590
TOTAL NUMBER OF MODULES	112
TOTAL NUMBER OF STRINGS	7
INVERTER MODEL	SMA SUNNY TRIPOWER CORE1 50-US
TOTAL NUMBER OF INVERTERS	i
TILT	+/- 55
AZIMUTH	180
RACKING	SINGLE-AXIS TRACKER

	PR DE DF		MARK DAT	E DESCRIPTION	ΒY			
F	ROJ ESN RW		A 02/27.	25 PRELIMINARY CONCEPTUAL DRAWING	BEP	0	C	
	J: N: N: D:	GENERAL ARRANGEMENT						
							io s ⁻	
1		& LAYOUI PLAN					T	
	194	7788-7784 COLINITY DD 220)
)	-01							www.tetratech.com
	17	RANCHVIEW COUNTY.						
1	-01 BE BE)N	
	17 EP _C	HELENA, MI 59602					and the second sec	

Bar Measures 1 inch, otherwise drawing not to scale

2

1

1

3	1	4

INVERTER	SCHEDULE

OUTPUT CURRENT x1.25 (A)	AC OCPD RATING (A)	THWN-2 CABLE SIZE (90 DEG) CABLE SIZE	AMPACITY (A) (75°)
80	90	(3) #3 AWG CU + (1) #8AWG GND	100
80	90	(3) #3 AWG CU + (1) #8AWG GND	100
80	90	(3) #3 AWG CU + (1) #6 AWG GND	100

R	SCHEDULE			
	(No.) CU CONDUCTOR	CONDUIT SIZE (PVC SCH. 80)	AMPACITY DERATING FACTOR	CALCULATED WORSE CASE CONDUCTOR AMAPACITY (PER NEC TABLE 310.15 (B)(3)(a))
	(14) #10 AWG	2"	0.5	20.0

MAKE/MODEL: MODULE POWI MODULE Vmp (MODULE Voc (MODULE Imp (a MODULE Isc (A)

5

MODULES PER STRING POWER NOMINAL STRI

STRING Voc (V) STRING Imp (A)

STRING Isc (A) MAX CIRCUIT (MIN STRING OC CORRECTED M

CORRECTED M

INVERTER SPECS		
MAKE/MODEL: SMA SUNNY TRIPOWER CORE1 50-US		
QUANTITY		
MAX DC CURRENT Isc (A)	120	
MAX DC VOLTAGE (V)	1000	
MPPT VOLTAGE RANGE (V)	150-1000	
NOMINAL PHASE-TO-PHASE VOLTAGE (V)	480	
NOMINAL AC POWER (kW)	50	
MAX OUTPUT CURRENT (A)	64	

MODULE SPECS	
QPEAK DUO XL-G11S.3 / BFG 590	
ER (W)	590
(V)	44.96
V)	53,60
A)	13.12
.)	13.74

STRING SPECS	
STRING	16
R (W)	9,440
NG Vmp (V)	719.36
1	857.60
	13.12
	13,74
CURRENT (A)	17.18
CPD RATING (A)	21.47
AX STRING Voc (V)	16.00
IN STRING VOLTAGE (V)	981.02

MODULE SPECS (BSTC)	
MAKE/MODEL: Q.PEAK DUO XL-G11S.3 / BFG 590) (BSTC)
MODULE POWER (W)	645
MODULE Vmp (V)	44.95
MODULE Voc (V)	53,79
MODULE Imp (A)	14.36
MODULE Isc (A)	15.04

STRING SPECS (BSTC)			
MODULES PER STRING	16		
STRING POWER (W)	10,326		
NOMINAL STRING Vmp (V)	719.20		
STRING Voc (V)	860.64		
STRING Imp (A)	14.36		
STRING Isc (A)	15,04		
MAX CIRCUIT CURRENT (A)	18.80		
MIN STRING OCPD RATING (A)	23.50		
CORRECTED MAX STRING Voc (V)	16.00		
CORRECTED MIN STRING VOLTAGE (V)	984.49		

	Γ
	Q.PEAK DUO X
	Mechanical Specification Format 96.9 in × 44.6 in × 1.38 in (inclu
F	(2462 mm × 1134 mm × 35 mm) Weight 76.9 lbs (34.9kg) Front Cover 0.08 in (2.0 mm) thermally pre with anti-reflection technology
	Back Cover 0.08 in (2.0 mm) semi-temper Frame Anodised aluminium Cell 6 × 26 monocrystalline Q.ANI Junction box 2.09-3.98 × 1.26-2.36 × 0.59-0.12
	Protection class IP67, with bypa Cable 4 mm² Solar cable; (+) ≥29.5 ir Connector Stäubli MC4; Stäubli MC4-Evo
_	Electrical Characteristics Power class MINIMUM PERFORMANCE AT STANDARD TES
	Power at MPP ¹ P _{MPP} [W] Short Circuit Current ¹ Isc [A] Open Circuit Voltage ¹ Voc [V]
	Current at MIPP IMPP [A] Voltage at MPP V _{MPP} [V] Efficiency! η [%] Bifaciality of P _{MPP} and I _{sc} 70% ±5% • Bifaciality git
	¹ Measurement tolerances P _{MPP} ±3%; I _{sc} , V _{oc} ±59 MINIMUM PERFORMANCE AT NORMAL OPER/ Power at MPP P _{MPP} [W]
E	Open Circuit Voltage Voc [V] Current at MPP Image [A] Voltage at MPP V_MPP [V]
	Measurement tolerances P _{MPP} ±3%; I _{sc} : V _{oc} ±5 Qcells PERFORMANCE WARRANTY Image: State of the stat
	CENCY Several Polymer
	06 32 02 51 01 50 06 32 CETATIVE
-	*Standard terms of guarantee for the 5 PV companies highest production capacity in 2021 (February 2021) TEMPERATURE COEFFICIENTS
	Temperature Coefficient of I _{sc} Temperature Coefficient of P _{MPP}
	Maximum System Voltage V _{sys} [V] Maximum Series Fuse Rating [A II Max. Push Load ³ , Test/Design [Ibs/
D	Max. Pull Load ³ , Test/Design [lbs/ ³ See Installation Manual for instructions
	Qualifications and Certificate UL61730-1 & UL61730-2, CE-compliant IEC 61715:2016, U.S. Pattern No. 9,893,215 (solar cells)
T, ALAIN	* Contact your Qcells Sales Representative for details rep Qcells pursues minimizing paper output i Note: Installation instructions must be followed. Contact our technic Hanwha Q CELLS America Inc. 400 Spectrum Center Drive, Suite 14
	Fully integrated • No additional racking required for rooftop insta • Integrated DC and AC disconnects and overvo • 12 direct string inputs for reduced labor and m • Up to 60% faster commercial PV system installa
	 Increased power, flexibility Six MPP trackers for flexible stringing and maxin ShadeFix, SMA's proprietary shade management optimizes at the string level Intelligent string monitoring to pinpoint array performed and string monitoring to pinpoint array performance of the string monitoring to pinpoint arra
	Enhanced safety, reliability Integrated SunSpec PLC signal for module-leve DC AFCI arc-fault protection certified to Standard
	Smart monitoring, control, service • I-V curve diagnostic function to visualize and de PV string electrical characteristics
	 Increased ROI with SMA ennexOS cross sector e SMA Smart Connected proactive O&M solutio diagnosing and servicing in the field
- C. L	
1 60.22.	

2

1

Technical data

por (be)				
laximum array power	50000 Wp STC		75000 Wp STC	93750 Wp STC
taxīmum system voltage			1000 Y	
ated MPP voltage range	330 V 800 V		500 V 800 V	550 V 800 V
IPPT operating voltage range			150 V.,. 1000 V	
linimum DC voltage / start voltage			150 V / 188 V	
IPP trackers/strings per MPP input			6/2	
aximum usable operating input current/per MPP tracker			120 A/20 A	
aximum short circuit current per MPPT / per string input			32 A / 30 A	
Putput (AC)				
C neminal newer	22200 W		50000 W	\$2500 W
	22200 VA		52000 VA	66000 VA
aximum apparent power	33300 VA		2 /2 /NI DE	00000 VA
urput phases / line connections			3/ 3-(IN)-PE	
cominal AC voltage			480 V/2// V VV TE	
C voltage range	10.1		244 V 305 V	20.4
laximum output current	40 A		64 A	80 A
ated grid frequency			60 Hz	
rid trequency/range		50) Hz, 60 Hz/-6 Hz+6Hz	
ower factor at rated power / adjustable displacement		1,	/ 0.0 leading 0.0 lagging	
armonics THD			<3%	
ficiency				
EC efficiency	97.5%		97.5%	97.5%
rotection and safety features				
ad rated DC disconnect				
ad rated AC disconnect				
round fault monitoring: Riso / Differential current			•/•	
C AFCI arc-tault protection			•	
unSpec PLC signal for rapid shuldown			•	
C reverse polarity protection			•	
C short circuit protection			•	
C surge protection: Type 2 / Type 1+2			0/0	
C surge protection: Type 2 / Type 1+2			0/0	
rotection class/overvoltage category (as per UL 840)			1/1/	
eneral data				
evice dimensions (W / H / D)	621 m	m/733 m	m / 569 mm 124 4 in x 28 8	tin x 22 d inl
avice weight	021 11	1117 7 33 11	84 kg (185 lbe)	(III X 22.4 III)
evice weight		75 90	- +60 °C (12 °E +140	•E)
perding temperature range		-20 0	- +70 °C / 40 °E +150	•E1
orage temperature range		-40 (-FI
udible noise emissions (full power @ 1m and 25 °C)			65 dB (A)	
opology			Transformerless	
ooling concept	Op	otiCool (fo	rced convection, variable sp	eed fans)
nclosure protection rating		Ty	pe 4X, 3SX (as per UL 50E)	
orrosivity classification according to IEC 61701			C3*	
aximum permissible relative humidity (non-condensing)			100%	
dditional information				
lounling		Free-star	nding with included mounting	feet
Connection		Ampher	nol UTX PV or H4Plus connec	tors
Connection		Amprie	nor or x 1 Y Or Har lus connec	
Distance (Sector / Sector / Se		crew letti	111015 - 4 AVYO 10 4/0 AVYO	COTAL
D indicators (Sidius / Paul / Continentication)			· 10	
erwork interfaces: Ethernet/ WLAN/ K5485			• (2 pons)/ ▲ / 0	
ata protocois: SMA Modbus/ SunSpec IEEE 154/ Modbus/ Webconnect			•/•/•	
nader ix technology for string level optimization			•	
telligent string performance monitoring			•	
V curve diagnostic function			•	
tegrated Plant Control / Q on Demand 24/7			•/•	
MA Smart Connected (proactive monitoring and service support)			•	
ertifications				
ertifications and approvals	UL 1741, UL 1699B Ed 1 UI	1998.C	SA 22.2 107-1. PV Rapid Shu	Idown System Equipment, UL 3741
CC compliance	and the second second second second		FCC Part 15 Class A	and a start want as a start
rid interconnection standards	IEEE 1547	-2018 11	1741 SA/SB-CA Rule 21 H	HECO SRD V2.0
dvanced arid support capabilities	I/HERT I/HVPT VOLVA	v VoleWa	III. Frequency Wall Rame Da	the Control Fixed Power Factor
araness and support capabilities	CITER, CITER, TOILTA	, ton tra	and reducing and work work by wo	are desired, tweet ower ructor.
arranty				
andard			10 years	
ptional extensions			15 / 20 years	
Optional features	▲ Subject to availability Da	ta at nomi	inal conditions - status: 08/20	023 *≥2 km from the coast
/pe designation	STP 33-US-41		STP 50-US-41	STP 62-US-41
Accessories				
SMA Data Manager M EDMALIS-10 SMA Sensor Mod MD SENLUS-40	dule Univer	rsal Mountin _KIT-10	ng System	AC Surge Protection Module Kit AC_SPD_KIT1-10, AC_SPD_KIT2_T1T2 DC Surge Protection Module Kit DC SPD_KIT4.10 oc_SPD_KIT5_T172

Sunny Tripower CORE1 33-US Sunny Tripower CORE1 50-US Sunny Tripower CORE1 62-US

7	B					www.tetratech.com			
	MARK DATE DESCRIPTION	A 02/27/25 PRELIMINARY CONCEPTUAL DRAWING							
	DANCHVIEW COLINTY WATED DIST		EQUIPMENT	DATA SHEFTS		1/00-1/04 COUNTY RD 229	RANCHVIEW COUNTY.		MELENA, MI 390UZ
Bar Measures 1 inch. otherwise drawing		ROJ SN RWI IKE	: I: N: D:	1	194 C	1-01)(17-)	01 ² BE ML	

6

RANCHVIEW COUNTY WATER DISTRICT - SOLAR PLANT CONCEPTUAL DESIGN:

SCENARIO #2 - FIXED TILT PV RACKING

GENERAL NOTES:

- THIS IS A CONCEPTUAL LAYOUT FOR ELECTRICAL DESIGN, SEE THE RACKING MANUFACTURER LAYOUT AND SHOP DRAWINGS FOR MORE DETAIL ON RACKING STRUCTURES.
 SITE ACCESS WILL BE THROUGH EXISTING ACCESS DRIVES. SEE CIVIL DRAWINGS FOR PROPOSED SITE ACCESS
- DRAWINGS FOR PROPOSED SITE ACCESS ROAD DETAILS. UNDERGROUND ELECTRICAL AND COMM SHALL BE INSTALLED THROUGH
- TRENCHING. THE UNITS OF THE DIMENSIONS IN THIS CONCEPTUAL LAYOUT ARE IN FEET, DECIMAL FORMAT.

LEGEND

	INVERTER		CANAL
	PV RACKING (16 MODULES)		50' WATER SETBACK
	PARCEL BOUNDARY		20' PARCEL SETBACK
<u> </u>	FENCE	75050500	EXISTING ACCESS ROADS
	PV AREA		DC TRENCH ROUTING
	AC TRENCH ROUTING		

7

·					
SITE CONDITIONS					
METEO STATION	HELENA, MT, USA (WMO: 727720				
EXTREME ANNUAL LOW TEMP (°C)	-28.				
AVERAGE HIGH AMBIENT TEMP (°C)	3				
TILT	1				

SYSTE	SYSTEM SPECS				
DC CAPACITY (kW)	66,08				
DC CAPACITY - BSTC (kW)	72.28				
AC CAPACITY (KVA)	50				
DC/AC RATIO (%)	1,32				
DC/AC RATIO - BSTC (%)	1.45				
MODULE MODEL	Q.PEAK DUO XL-G11S.3 / BFG 590				
TOTAL NUMBER OF MODULES	t12				
TOTAL NUMBER OF STRINGS	5				
INVERTER MODEL	SMA SUNNY TRIPOWER CORE1 50-US				
TOTAL NUMBER OF INVERTERS	1				
ТИЛТ	15				
AZIMUTH	180				
PACKINC					

2 VICINITY MAP

RANCHVIEW COUNTY WATER DIST. Mark Date Description Date Description RANCHVIEW COUNTY WATER DIST. Mark Date Description Distribution RANCHVIEW COUNTY WATER DIST. Mark Date Description Distribution Reneword A 02/27/25 PRELIMINARY CONCEPTUAL DRAWING BEP Ranchview COUNTY RD 229 Mark Date Distribution Distribution Ranchview COUNTY, HELENA, MT 59602 MT 59602 Distribution	(TETRA TECH)	www.tetratecn.com		
RANCHVIEW COUNTY WATER DIST.Mark ADate DisplayDescriptionBYGENERAL ARRANGEMENTA02/27/25PRELIMINARY CONCEPTUAL DRAWINGBF& LAYOUT PLANA02/27/25PRELIMINARY CONCEPTUAL DRAWINGBF% LAYOUT PLANA02/27/25PRELIMINARY CONCEPTUAL DRAWINGBF7788-7784 COUNTY RD 229AAAARANCHVIEW COUNTY,AAAAHELENA, MT 59602AAAA	C		ot str	FC	DR CTI	ON	
RANCHVIEW COUNTY WATER DIST.MARKDATEDESCRIPTIONBYGENERAL ARRANGEMENTA02/27/25PRELIMINARY CONCEPTUAL DRAWINGBF& LAYOUT PLANA02/27/25PRELIMINARY CONCEPTUAL DRAWINGBF% LAYOUT PLANA02/27/25PRELIMINARY CONCEPTUAL DRAWINGBF7788-7784 COUNTY RD 229AAAARANCHVIEW COUNTY, HELENA, MT 59602AAAA							
RANCHVIEW COUNTY WATER DIST.MARKDATEDESCRIPTIONGENERAL ARRANGEMENTA02/27/25PRELIMINARY CONCEPTUAL DRAWING& LAYOUT PLANA02/27/25PRELIMINARY CONCEPTUAL DRAWING% LAYOUT PLANA02/27/25PRELIMINARY CONCEPTUAL DRAWING% T388-7784 COUNTY RD 229AAARANCHVIEW COUNTY, RD 229AAAHELENA, MT 59602AAA	BY BEP						
RANCHVIEW COUNTY WATER DIST.MARK DATEDATE DATEDATE DATEGENERAL ARRANGEMENTMARK ADATEDATE& LAYOUT PLAN% LAYOUT PLANMARKMARK7788-7784 COUNTY RD 229MARKMARKRANCHVIEW COUNTY,MARKMARKHELENA, MT 59602MARKMARK	SCRIPTION ELIMINARY CONCEPTUAL DRAWING						
RANCHVIEW COUNTY WATER DIST. GENERAL ARRANGEMENT & LAYOUT PLAN 7788-7784 COUNTY RD 229 RANCHVIEW COUNTY, HELENA, MT 59602	MARK DATE DE: A 02/27/25 PRI						
	RANCHVIEW COUNTY WATER DIST.	GENERAL ARRANGEMENT	& LAYOUT PLAN	7788-7784 COUNTY RD 229			HELENA, MT 59602

Bar Measures 1 inch, otherwise drawing not to scale

Scale: NTS

CHEDULE							
RRENT x1.25 (A)	AC OCPD RATING (A)	THWN-2 CABLE SIZE (90 DEG) CABLE SIZE	AMPACITY (A) (75°)				
	90	(3) #3 AWG CU + (1) #8AWG GND	100				
	90	(3) #3 AWG CU + (1) #8AWG GND	100				
	90	(3) #3 AWG CU + (1) #6 AWG GND	100				

R	SCHEDULE			
	(No.) CU CONDUCTOR	CONDUIT SIZE (PVC SCH. 80)	AMPACITY DERATING FACTOR	CALCULATED WORSE CASE CONDUCTOR AMAPACITY (PE NEC TABLE 310.15 (B)(3)(a))
	(14) #10 AWG	2"	0.5	20.0

MAKE/MODEL: MODULE POWI MODULE Vmp (MODULE Voc (MODULE Imp (a

MODULES PER S STRING POWER NOMINAL STRIN

STRING Voc (V) STRING Imp (A)

STRING Isc (A) MAX CIRCUIT C MIN STRING OC CORRECTED M

CORRECTED M

INVERTER SPECS	
MAKE/MODEL: SMA SUNNY TRIPOWER CORE1	50-US
QUANTITY	
MAX DC CURRENT Isc (A)	120
MAX DC VOLTAGE (V)	1000
MPPT VOLTAGE RANGE (V)	150-1000
NOMINAL PHASE-TO-PHASE VOLTAGE (V)	480
NOMINAL AC POWER (kW)	50
MAX OUTPUT CURRENT (A)	64

MODULE SPECS	
MAKE/MODEL: Q.PEAK DUO XL-G11S.3 /	BFG 590
MODULE POWER (W)	590
MODULE Vmp (V)	44.96
MODULE Voc (V)	53,60
MODULE Imp (A)	13.12
MODULE Isc (A)	13.74

STRING SPECS	
STRING	16
R (W)	9,440
NG Vmp (V)	719.36
1	857.60
	13.12
	13,74
CURRENT (A)	17.18
CPD RATING (A)	21.47
AX STRING Voc (V)	16.00
IN STRING VOLTAGE (V)	981.02

MODULE SPECS (BSTC)				
MAKE/MODEL: Q.PEAK DUO XL-GTIS.3 / BFG 590 (BSTC)				
MODULE POWER (W)	645			
MODULE Vmp (V)	44.95			
MODULE Voc (V)	53,79			
MODULE Imp (A)	14.36			
MODULE Isc (A)	15.04			

STRING SPECS (BSTC)			
MODULES PER STRING	16		
STRING POWER (W)	10,326		
NOMINAL STRING Vmp (V)	719.20		
STRING Voc (V)	860.64		
STRING Imp (A)	14.36		
STRING Isc (A)	15,04		
MAX CIRCUIT CURRENT (A)	18.80		
MIN STRING OCPD RATING (A)	23.50		
CORRECTED MAX STRING Voc (V)	16.00		
CORRECTED MIN STRING VOLTAGE (V)	984.49		

	Γ
	Q.PEAK DUO X
	Mechanical Specification Format 96.9 in × 44.6 in × 1.38 in (inclu
F	(2462 mm × 1134 mm × 35 mm) Weight 76.9 lbs (34.9kg) Front Cover 0.08 in (2.0 mm) thermally pre with anti-reflection technology
	Back Cover 0.08 in (2.0 mm) semi-temper Frame Anodised aluminium Cell 6 × 26 monocrystalline Q.ANI Junction box 2.09-3.98 × 1.26-2.36 × 0.59-0.12
	Protection class IP67, with bypa Cable 4 mm² Solar cable; (+) ≥29.5 ir Connector Stäubli MC4; Stäubli MC4-Evo
_	Electrical Characteristics Power class MINIMUM PERFORMANCE AT STANDARD TES
	Power at MPP ¹ P _{MPP} [W] Short Circuit Current ¹ Isc [A] Open Circuit Voltage ¹ Voc [V]
	Current at MIPP IMPP [A] Voltage at MPP V _{MPP} [V] Efficiency! η [%] Bifaciality of P _{MPP} and I _{sc} 70% ±5% • Bifaciality git
	¹ Measurement tolerances P _{MPP} ±3%; I _{sc} , V _{oc} ±59 MINIMUM PERFORMANCE AT NORMAL OPER/ Power at MPP P _{MPP} [W]
E	Open Circuit Voltage Voc [V] Current at MPP Image [A] Voltage at MPP V_MPP [V]
	Measurement tolerances P _{MPP} ±3%; I _{sc} : V _{oc} ±5 Qcells PERFORMANCE WARRANTY Image: State of the stat
	CENCY Several Polymer
	06 32 02 51 01 50 06 32 CETATIVE
-	*Standard terms of guarantee for the 5 PV companies highest production capacity in 2021 (February 2021) TEMPERATURE COEFFICIENTS
	Temperature Coefficient of I _{sc} Temperature Coefficient of P _{MPP}
	Maximum System Voltage V _{sys} [V] Maximum Series Fuse Rating [A II Max. Push Load ³ , Test/Design [Ibs/
D	Max. Pull Load ³ , Test/Design [lbs/ ³ See Installation Manual for instructions
	Qualifications and Certificate UL61730-1 & UL61730-2, CE-compliant IEC 61715:2016, U.S. Pattern No. 9,893,215 (solar cells)
T, ALAIN	* Contact your Qcells Sales Representative for details rep Qcells pursues minimizing paper output i Note: Installation instructions must be followed. Contact our technic Hanwha Q CELLS America Inc. 400 Spectrum Center Drive, Suite 14
	Fully integrated • No additional racking required for rooftop insta • Integrated DC and AC disconnects and overvo • 12 direct string inputs for reduced labor and m • Up to 60% faster commercial PV system installa
	 Increased power, flexibility Six MPP trackers for flexible stringing and maxin ShadeFix, SMA's proprietary shade management optimizes at the string level Intelligent string monitoring to pinpoint array performed and string monitoring to pinpoint array performance of the string monitoring to pinpoint arra
	Enhanced safety, reliability Integrated SunSpec PLC signal for module-leve DC AFCI arc-fault protection certified to Standard
	Smart monitoring, control, service • I-V curve diagnostic function to visualize and de PV string electrical characteristics
	 Increased ROI with SMA ennexOS cross sector e SMA Smart Connected proactive O&M solutio diagnosing and servicing in the field
- C. L	
1 60.22.	

2

1

Technical data

por (be)				
laximum array power	50000 Wp STC		75000 Wp STC	93750 Wp STC
taxīmum system voltage			1000 Y	
ated MPP voltage range	330 V 800 V		500 V 800 V	550 V 800 V
IPPT operating voltage range			150 V.,. 1000 V	
linimum DC voltage / start voltage			150 V / 188 V	
IPP trackers/strings per MPP input			6/2	
aximum usable operating input current/per MPP tracker			120 A/20 A	
aximum short circuit current per MPPT / per string input			32 A / 30 A	
Putput (AC)				
C neminal newer	22200 W		50000 W	\$2500 W
	22200 VA		52000 VA	66000 VA
aximum apparent power	33300 VA		2 /2 /NI DE	00000 VA
urput phases / line connections			3/ 3-(IN)-PE	
cominal AC voltage			480 V/2// V VV TE	
C voltage range	10.1		244 V 305 V	20.4
laximum output current	40 A		64 A	80 A
ated grid frequency			60 Hz	
rid trequency/range		50) Hz, 60 Hz/-6 Hz+6Hz	
ower factor at rated power / adjustable displacement		1,	/ 0.0 leading 0.0 lagging	
armonics THD			<3%	
ficiency				
EC efficiency	97.5%		97.5%	97.5%
rotection and safety features				
ad rated DC disconnect				
ad rated AC disconnect				
round fault monitoring: Riso / Differential current			•/•	
C AFCI arc-tault protection			•	
unSpec PLC signal for rapid shuldown			•	
C reverse polarity protection			•	
C short circuit protection			•	
C surge protection: Type 2 / Type 1+2			0/0	
C surge protection: Type 2 / Type 1+2			0/0	
rotection class/overvoltage category (as per UL 840)			1/1/	
eneral data				
evice dimensions (W / H / D)	621 m	m/733 m	m / 569 mm 124 4 in x 28 8	tin x 22 d inl
avice weight	021 11	1117 7 33 11	84 kg (185 lbe)	(III X 22.4 III)
evice weight		75 90	- +60 °C (12 °E +140	•E)
perding temperature range		-20 0	- +70 °C / 40 °E +150	•E1
orage temperature range		-40 0		-FI
udible noise emissions (full power @ 1m and 25 °C)			65 dB (A)	
opology			Transformerless	
ooling concept	Op	otiCool (fo	rced convection, variable sp	eed fans)
nclosure protection rating		Ty	pe 4X, 3SX (as per UL 50E)	
orrosivity classification according to IEC 61701			C3*	
aximum permissible relative humidity (non-condensing)			100%	
dditional information				
lounling		Free-star	nding with included mounting	feet
Connection		Ampher	nol UTX PV or H4Plus connec	tors
Connection		Amprie	nor or x 1 Y Or Har lus connec	
Distance (Sector / Sector / Se		crew letti	111015 - 4 AVYO 10 4/0 AVYO	COTAL
D indicators (Sidius / Paul / Continentication)			· 10	
erwork interfaces: Ethernet/ WLAN/ K5485			• (2 pons)/ ▲ / 0	
ata protocois: SMA Modbus/ SunSpec IEEE 154/ Modbus/ Webconnect			•/•/•	
nader ix technology for string level optimization			•	
telligent string performance monitoring			•	
V curve diagnostic function			•	
tegrated Plant Control / Q on Demand 24/7			•/•	
MA Smart Connected (proactive monitoring and service support)			•	
ertifications				
ertifications and approvals	UL 1741, UL 1699B Ed 1 UI	1998.C	SA 22.2 107-1. PV Rapid Shu	Idown System Equipment, UL 3741
CC compliance	and the second second second second		FCC Part 15 Class A	and a start want as a start
rid interconnection standards	IEEE 1547	-2018 11	1741 SA/SB-CA Rule 21 H	HECO SRD V2.0
dvanced arid support capabilities	I/HERT I/HVPT VOLVA	v VoleWa	III. Frequency Wall Rame Da	the Control Fixed Power Factor
araness and support capabilities	CITER, CITER, TOILTA	, ton tra	and reducing and work work by wo	are desired, tweet ower ructor.
arranty				
andard			10 years	
ptional extensions			15 / 20 years	
Optional features	▲ Subject to availability Da	ta at nomi	inal conditions - status: 08/20	023 *≥2 km from the coast
/pe designation	STP 33-US-41		STP 50-US-41	STP 62-US-41
Accessories				
SMA Data Manager M EDMALIS-10 SMA Sensor Mod MD SENLUS-40	dule Univer	rsal Mountin _KIT-10	ng System	AC Surge Protection Module Kit AC_SPD_KIT1-10, AC_SPD_KIT2_T1T2 DC Surge Protection Module Kit DC SPD_KIT4.10 DC SPD_KIT5_T172

Sunny Tripower CORE1 33-US Sunny Tripower CORE1 50-US Sunny Tripower CORE1 62-US

7	B					www.tetratech.com			
	MARK DATE DESCRIPTION	A 02/27/25 PRELIMINARY CONCEPTUAL DRAWING							
	DANCHVIEW COLINTY WATED DIST		EQUIPMENT	DATA SHFFTS		1/00-1/04 COUNTY RD 229	RANCHVIEW COUNTY.		MELENA, MI 390UZ
Bar Measures 1 inch. otherwise drawing		ROJ SN RWI IKE	: I: N: D:	1	194 C	1-01)(17-)	01 ² BE ML	

6

SCENARIO #3 - FIXED-TILT PV RACKING WITH BACK-UP ENERGY STORAGE SYSTEM

RANCHVIEW COUNTY WATER DISTRICT -SOLAR PLANT CONCEPTUAL DESIGN:

Der Massuras 1 inch. ethemulas drouing net to see	
Bar Measures 1 inch. Otherwise drawind not to scale)

Scale: NTS

2 VICINITY MAP

SYSTE	IM SPECS
DC CAPACITY (kW)	86.40
DC CAPACITY - BSTC (kW)	94.50
AC CAPACITY (KVA)	48
DC/AC RATIO (%)	1,80
DC/AC RATIO - BSTC (%)	1.9
MODULE MODEL	Q.PEAK DUO XL-G10.3/BFG 48
TOTAL NUMBER OF MODULES	18
TOTAL NUMBER OF STRINGS	24
INVERTER MODEL	SMA SUNNY BOY SMART ENERGY-US 9
TOTAL NUMBER OF INVERTERS	
BATTERY MODEL	SMA HOME STORAGE-US 18.
BATTERY CAPACITY (kWh)	18.
TOTAL NUMBER OF BATTERIES	
TOTAL BATTERY CAPACITY (kWh)	94.
TILT	1
AZIMUTH	18
RACKING	FIXED-TIL

x	FENCE		EXISTING ACCESS		
	PV AREA		DC TRENCH ROUTI		
	AC TRENCH ROUTING		BATTERY		
	SITE CON	NDITIONS			
	METEO STATION	HELENA, MT	, USA (WMO: 727720)		
	EXTREME ANNUAL LOW TEMP (°C)	,	-28.3		
	AVERAGE HIGH AMBIENT TEMP (°C)	3			
	TILT				
	SYSTEM	4 SPECS			
	DC CAPACITY (kW)		86.40		
	DC CAPACITY - BSTC (kW)		94.50		
	AC CAPACITY (KVA)		48		
	DC/AC RATIO (%)		1.80		
	DC/AC RATIO - BSTC (%)		1.97		
	MODULE MODEL	Q.PEAK	DUO XL-G10.3/BFG 480		

LEGEND							
	INVERTER		CANAL				
	PV RACKING (9 MODULES)		50' WATER SETBACK				
	PARCEL BOUNDARY		20' PARCEL SETBACK				
<u> </u>	FENCE		EXISTING ACCESS ROADS				
	PV AREA		DC TRENCH ROUTING				
	AC TRENCH ROUTING		BATTERY				

UNDERGRO SHALL BE I TRENCHING THE UNITS CONCEPTU DECIMAL F	AILS. DUND ELECTRICAL AND COMM NSTALLED THROUGH G. OF THE DIMENSIONS IN THIS JAL LAYOUT ARE IN FEET, ORMAT.	1	
EGEND	<u>)</u>		
	INVERTER		CANAL
	PV RACKING (9 MODULES)		50' WATER SET
	PARCEL BOUNDARY		20' PARCEL SE
		NOAD DETAILS. UNDERGROUND ELECTRICAL AND COMM SHALL BE INSTALLED THROUGH TRENCHING. THE UNITS OF THE DIMENSIONS IN THIS CONCEPTUAL LAYOUT ARE IN FEET, DECIMAL FORMAT. EGEND INVERTER PV RACKING (9 MODULES) PARCEL BOUNDARY	NOAD DETAILS. UNDERGROUND ELECTRICAL AND COMM SHALL BE INSTALLED THROUGH TRENCHING. THE UNITS OF THE DIMENSIONS IN THIS CONCEPTUAL LAYOUT ARE IN FEET, DECIMAL FORMAT. EGEND INVERTER PV RACKING (9 MODULES) PARCEL BOUNDARY

GENERAL NOTES:

ROAD DETAILS.

THIS IS A CONCEPTUAL LAYOUT FOR ELECTRICAL DESIGN, SEE THE RACKING MANUFACTURER LAYOUT AND SHOP DRAWINGS FOR MORE DETAIL ON RACKING STRUCTURES.
 SITE ACCESS WILL BE THROUGH EXISTING ACCESS DRIVES. SEE CIVIL DRAWINGS FOR PROPOSED SITE ACCESS ROAD DETAILS

194-0117-011 PROJ: DESN: BEF DRWN: BE CHKD: E-101

% %

ANCHVIGEN

R

TELDERS	CHEBCEE		
T x1.25 (A)	AC OCPD RATING (A)	THWN-2 CABLE SIZE (90 DEG) CABLE SIZE	AMPACITY (A) (75°)
	60	(3) #6 AWG CU + (1) #10 AWG CU GND	65
	60	(3) #6 AWG CU + (1) #10 AWG CU GND	65
	60	(3) #6 AWG CU + (1) #10 AWG CU GND	65
	60	(3) #6 AWG CU + (1) #10 AWG CU GND	65
	60	(3) #6 AWG CU + (1) #10 AWG CU GND	65
	80	(3) #4 AWG CU + (1) #8 AWG CU GND	85
	300	(4) 350 KCMIL CU + (1) #4 AWG CU GND	310
	300	(4) 350 KCMIL CU + (1) #4 AWG CU GND	310
	300	(4) 350 KCMIL CU + (1) #4 AWG CU GND	310
		·	

IA SUNNI DUI SMARI ENERG	51-05 9.0
	5
Γ Isc (A)	60
E (V)	600
ANGE (V)	168-480
TO-PHASE VOLTAGE (V)	240
/ER (kW)	9.6
RENT (A)	40

	MODULE SPECS (BS	TC)
	MAKE/MODEL; Q.PEAK DUO XL-G10,3/B	FG 480 (BSTC)
480	MODULE POWER (W)	525
45.33	MODULE Vmp (V)	45.32
53.39	MODULE Voc (V)	53.58
10.59	MODULE Imp (A)	11.58
11,12	MODULE Isc (A)	12,17
	STRING SPECS (BST	ГС)
9	STRING SPECS (BST MODULES PER STRING	FC) 9
<u>9</u> 4,320	STRING SPECS (BST MODULES PER STRING STRING POWER (W)	FC) 9 4,725
9 4,320 407.97	STRING SPECS (BST MODULES PER STRING STRING POWER (W) NOMINAL STRING Vmp (V)	ГС) 9 4,725 407.88
9 4,320 407.97 480.51	STRING SPECS (BST MODULES PER STRING STRING POWER (W) NOMINAL STRING Vmp (V) STRING Voc (V)	FC) 9 4,725 407.88 482.22
9 4,320 407.97 480.51 10.59	STRING SPECS (BST MODULES PER STRING STRING POWER (W) NOMINAL STRING Vmp (V) STRING Voc (V) STRING Imp (A)	FC) 9 4,725 407.88 482.22 11.58
9 4,320 407.97 480.51 10.59	STRING SPECS (BST MODULES PER STRING STRING POWER (W) NOMINAL STRING Vmp (V) STRING Voc (V) STRING Imp (A)	FC) 9 4,725 407.88 482.22 11.58

NOT FOR CONSTRUCTION Mark Date Description A DIAGRE LINE A DIAGRE LINE BEP BP AC SINGLE LINE BEP BEP BEP 7788-7784 COUNTY RD 229 FRELIMINARY CONCEPTUAL DRAWING BF 7788-7784 COUNTY FRENCHVIEW COUNTY FRENCHVIEW COUNTY HELENA, MT 59602 FRENCHVIEW COUNTY FRENCHVIEW COUNTY	Mark Discription Discription Discription Discr		THE TETRA TECH		www.tetratech.com				
RANCHVIEW COUNTY WATER DIST. Mark Date Description BY AC SINGLE LINE A 022725 PRELIMINARY CONCEPTUAL DRAWING BP AC SINGLE LINE H 0227755 PRELIMINARY CONCEPTUAL DRAWING BP AC SINGLE LINE H 0227755 PRELIMINARY CONCEPTUAL DRAWING BP 7788-7784 T00NTY RD 229 H H H H 7788-7784 COUNTY RD 229 H H H H 7788-7784 COUNTY RD 229 H H H H	MARK DATE DESCRIPTION MARK DATE DESCRIPTION A 02/27/25 PRELIMINARY CONCEPTUAL DRAWING A 02/27/25 PRELIMINARY CONCEPTUAL DRAWING A 02/27/25 PRELIMINARY CONCEPTUAL DRAWING B 02/27/25 PRELIMINARY CONCEPTUAL DRAWING D1AGRAM 1 1 T788-7784 COUNTY 1 1 T788-7784 COUNTY 1 1 MELENA, MT 59602 1 1 MEM MELENA, MT 59602 1	(co	NO DNS ⁻			TIC	N)	
RANCHVIEW COUNTY WATER DIST. Mark DATE Description BY AC SINGLE LINE A 02/27/25 PRELIMINARY CONCEPTUAL DRAWING B AC SINGLE LINE P 02/27/25 PRELIMINARY CONCEPTUAL DRAWING B AC SINGLE LINE P 02/27/25 PRELIMINARY CONCEPTUAL DRAWING B 7788-7784 COUNTY RD 229 P P P P 7788-7784 COUNTY RD 229 P P P P RANCHVIEW COUNTY, HELENA, MT 59602 P P P P	MARK DATE DESCRIPTION MARK DATE DESCRIPTION A 022725 PRELIMINARY CONCEPTUAL DRAWING BY A 0227725 PRELIMINARY CONCEPTUAL DRAWING BFP A 0227725 PRELIMINARY CONCEPTUAL DRAWING BFP A 0227725 PRELIMINARY CONCEPTUAL DRAWING BFP DIAGRAM 7788-7784 COUNTY RD 229 PRIMINARY CONCEPTUAL DRAWING BFH T788-7784 TOUNTY RD 229 PRI PRIMINARY CONCEPTUAL DRAWING BFH HELENA, MT 59602 PRIM PRIM PRIM PRIM								
RANCHVIEW COUNTY WATER DIST.MARK ADATE DISCRIDIALDE DESCRIDIALDE BERAC SINGLE LINEA02/27/25PRELIMINARY CONCEPTUAL DRAWINGBYAC SINGLE LINEA02/27/25PRELIMINARY CONCEPTUAL DRAWINGBFAC SINGLE LINEA02/27/25PRELIMINARY CONCEPTUAL DRAWINGBFAC SINGLE LINEA02/27/25PRELIMINARY CONCEPTUAL DRAWINGBFAC SINGLE LINEA02/27/25PRELIMINARY CONCEPTUAL DRAWINGBFAC SINGLAMA02/27/25PRELIMINARY CONCEPTUAL DRAWINGBFAC SINGLAMA0A0AAC SINGRAMA0A0AAC SINGRAMA0A0AAC SINGRAMA0A0AAC SINGRAMA0A0AAC SINGRAMA0A0AAC SINGRAMA0A0AAC SINGRAMA0A0AANCHVIEW COUNTY,A00AHELENA, MT 59602A00A	Mark Date Description Mark Date Description A 027726 Preliminary conceptual Drawing BF A 0227726 Preliminary conceptual Drawing BF A DIAGRAM I I I I A DIAGRAM I I I I I A DIAGRAM I I I I I I A DIAGRAM I <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
RANCHVIEW COUNTY WATER DIST.MarkDateDescriptionAC SINGLE LINEA02/27/25PRELIMINARY CONCEPTUAL DRAWINGAC SINGLE LINEA02/27/25PRELIMINARY CONCEPTUAL DRAWINGT788-7784 COUNTY RD 229AAARANCHVIEW COUNTY,AAAHELENA, MT 59602AAA	MARK DATE DESCRIPTION MARK DISCRIPTION A 02/27/25 PRELIMINARY CONCEPTUAL DRAWING A 02/27/25 PRELIMINARY CONCEPTUAL DRAWING A 02/27/25 PRELIMINARY CONCEPTUAL DRAWING A 02/27/25 PRELIMINARY CONCEPTUAL DRAWING A 02/27/25 PRELIMINARY CONCEPTUAL DRAWING A 0 A A A A D A A 0 A A A A A A A DIAGRAM 7788-7784 COUNTY RD 229 A<	BY BEP							
RANCHVIEW COUNTY WATER DIST.MARKDATEDESCRIPTIONAC SINGLE LINEA 02/27/25PRELIMINARY CCAC SINGLE LINEA 02/27/25PRELIMINARY CCDIAGRAMA 02/27/25PRELIMINARY CC7788-7784 COUNTY RD 229A 0A 07788-7784 COUNTY RD 229A 0A 0RANCHVIEW COUNTY,A 0A 0HELENA, MT 59602A 0A 0	Mark Mark Date Description Mark Mark Date Description A 02/27/25 PRELIMINARY CC A 02/27/25 PRELIMINARY CC A 02/27/25 PRELIMINARY CC A 02/27/25 PRELIMINARY CC A C SINGLE LINE A DIAGRAM DIAGRAM A A DIAGRAM T788-7784 COUNTY RD 229 PRELIMINARY CC Table BED PROUNTY RD 229 PRELIMINARY CC HELENA, MT 59602 HELENA, MT 59602 PRELIMINARY CC PRANCHVIEW COUNTY,	NCEPTUAL DRAWING							
RANCHVIEW COUNTY WATER DIST.MARK DIST.MARK DIST.AC SINGLE LINEDIAGRAM7788-7784 COUNTY RD 229TRANCHVIEW COUNTY RD 229RANCHVIEW COUNTY, RD 229HELENA, MT 59602	MARK RANCHVIEW COUNTY WATER DIST. MARK MARK MARK MARK A RANCHVIEW COUNTY WATER DIST. AC SINGLE LINE A 002 AC SINGLE LINE DIAGRAM 7788-7784 COUNTY RD 229 A 002 DLACHVIEW COUNTY, T788-7784 COUNTY RD 229 134-0 14-0 14-0 DESN: BED TANCHVIEW COUNTY, BED 14-0 14-0 14-0 DLACH MT 59602 WIT WIT 14-0 14-0 14-0 DLACH WIT BED WIT WIT 14-0 14-0 DLACH WIT BED WIT WIT 14-0 14-0 DLACH WIT WIT WIT WIT 14-0 14-0 DLACH WIT WIT WIT WIT 14-0 14-0 14-0 DLACH WIT WIT WIT WIT 14-0 14-0 14-0 DLACH WIT WIT WIT WIT 14-0 14-0 14-0 MAR <td< td=""><td>ATE DESCRIPTION 27/25 PRELIMINARY CC</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	ATE DESCRIPTION 27/25 PRELIMINARY CC							
RANCHVIEW COUNTY WATER DIST. AC SINGLE LINE DIAGRAM 7788-7784 COUNTY RD 229 RANCHVIEW COUNTY, HELENA, MT 59602	LUKD: 104-01 MATER DIST. ANCHVIEW COUNTY WATER DIST. RANCHVIEW COUNTY WATER DIST. AC SINGLE LINE AC SINGLE LINE DIAGRAM DIAGRAM AC SINGLE LINE DIAGRAM DIAGRAM 7788-7784 COUNTY RD 229 DEZN: Tamo 1000000000000000000000000000000000000	MARK D							
	PROJ: 194-0 17- DESN: BEP DRWN: BEP	RANCHVIEW COUNTY WATER DIST.	AC SINGLE LINE	DIAGRAM	1/00-1/04 COUNIT RD 229	RANCHVIEW COUNTY.		HELENA, MI 59602	

Bar Measures 1 inch, otherwise drawing not to scale

Scale: NTS

For over 40 years, SMA has been the leader in solar energy and the new SMA Home Energy Solution will continue this trajectory. Installers choose SMA for

Boy Smart Energy hybrid inverter. This groundbreaking inverter combines the functions of a PV and battery inverter into a single unit, keeping electrical upgrades to a minimum. The Sunny Boy Smart Energy features modular add-on options such as the SMA Energy Meter, Backup Secure and Backup Select*. These enhancements improve the system's performance and provide homeowners with

including an integrated system manager, SunSpec RSD transmitter, SMA ShadeFix, SMA Smart Connected and compatibility with

reliable, high-performance and innovative solutions, with support

			Perform	ance, Co	ost, Ope	rating, Tax & Financing Inputs											Lookup for State Av	verage Capacity
	1																Facto State List	DC Capacity
Check	Selected Technology		Photovoltaic	Notes ?	Chec	k			Notes								AK	factor
																	AL	15.1%
	Project Size and Performance	Units	Input Value			Cost-Based Tariff Rate Structure	Units	Input Value									AR	15.1%
	Generator Nameplate Capacity	kW dc	66.1	?		Payment Duration for Cost-Based Tariff	years	25	?								AZ	19.4%
	Net Capacity Factor: Select "State Average" or "Custom"	→	State Average	?		% of Year-One Tariff Rate Escalated	%	0.0%	?								CA	18.0%
	Net C.F.: If "State Average" method, then select state →		MT	?		Cost-Based Tariff Escalation Rate	%	0.0%	?								co	17.7%
																	ст	13.7%
	Net Capacity Factor, Yr 1		15.09	?		Forecasted Market Value of Production; applies after	r Incentive Expiration	n	?								DE	14.5%
	Production, Yr 1	kWh	112,90) ?													FL.	16.0%
	Annual Production Degradation	%	0.5%	?													GA	15.3%
	Project Useful Life	years	2	?													н	16.9%
																	IA	13.8%
	Capital Costs	Units	Input Value														ID	16.2%
	Select Cost Level of Detail		Intermediate	?		Federal Incentives	Units	Input Value									L	14.0%
						Select Form of Federal Incentive		Neither	?								IN	13.7%
	Generation Equipment	\$	\$140,132	?													KS	16.4%
	Balance of Plant	\$	\$0	?													KY	14.0%
	Interconnection	\$	\$0	?	11												LA	15.1%
	Development Costs & Fee	\$	\$30,000	?													MA	13.3%
1	Reserves & Financing Costs	\$	\$1,93	?													MD	14.6%
1																	ME	13.1%
1	Total Installed Cost (before rebates/grants, if any)	\$	\$172,07	?	11												MI	13.2%
1	Total Installed Cost (before rebates/grants, if any)	\$/Watt dc	\$2.12	?			_										MN	13.5%
1				-													MO	14.9%
	Operations & Maintenance	Units	Input Value			Additional Federal Grants (Other than Section 1603)	\$	\$0	?								MS	15.3%
	Select Cost Level of Detail		Intermediate	?		Federal Grants Treated as Taxable Income?	1	Yes	?								MT	15.0%
	Fixed O&M Expense, Yr 1	\$/kW-yr dc	\$17.2	?					-								NC	15.3%
	Variable O&M Expense, Yr 1	¢/kWh	0.0	?		State Rebates, Tax Credits and/or REC Revenue	Units	Input Value									ND	14.2%
	O&M Cost Inflation, initial period	%	2.5%	?		Select Form of State Incentive		Neither	?								NE	15.8%
	Initial Period ends last day of:	year	1	?													NH	13.2%
	O&M Cost Inflation, thereafter	%	2.5%	?													NJ	14.5%
	Insurance, Yr 1 (% of Total Cost)	%	1.0%	?													NM	19.5%
	Insurance, Yr 1 (\$) (Provided for reference)	\$	\$1,70	2			-		-								NV	18.6%
	Project Management Yr 1	\$/yr	ŞI	?													NY	13.3%
	Property Tax of PILOT, YF 1	\$/yr	5	2			-		-								OH	13.2%
	Annual Property Tax Adjustment Pactor	70 \$4.00	0.07	2			-										UK OR	10.5%
	Boyalties (% of revenue)	94	0.09	2													PA	13.5%
	Royalties (if of reference)	S	S	2													RI	13.8%
	rtojakos, m r (e) (monaca isi relevance)	Ŷ	Ų.	<u> </u>													50	15.8%
	Construction Financing	Units	Input Value	1		Additional State Rebates/Grants	\$/Watt	\$2.12	?								SD	14.8%
	Construction Period	months		?		Total \$ Cap on State Rebates/Grants	\$	\$500,000	?								TN	14.9%
	Interest Rate (Annual)	%	0.0%	?		State Rebates/Grants Treated as Taxable Income?		No	?								тх	16.2%
	Interest During Construction	\$	\$1) ?													UT	17.9%
						Capital Expenditures During Operations: Inverter Re	placement	Input Value									VA	14.9%
	Permanent Financing	Units	Input Value			1st Equipment Replacement	year	12	?								VT	12.9%
	% Debt (% of hard costs) (mortgage-style amort.)	%	0%	?		1st Replacement Cost (\$ in year replaced)	\$/Watt dc	\$0.150	?								WA	13.2%
						2nd Equipment Replacement	year	25	?								wi	13.7%
				_		2nd Replacement Cost (\$ in year replaced)	\$/Watt dc	\$0.150	?								wv	13.1%
1					11	Deserves Frends diferen Orenetilene	11-24-	lana di Malan	1								WY	17.1%
1		-			11	Decommissioning Reserve	Units	input value										
I						Eurod from Operations or Salurate Value?		Operations	2									
I						Reserve Requirement	2	Coperations Co	2									
I						· ····································	φ I	\$0	a <u> </u>									
1		1			11	Initial Funding of Reserve Accounts	Units	Input Value	1									
1	% Equity (% hard costs) (soft costs also equity funded)	%	100%	?	11	Debt Service Reserve	Unito	input raido										
	Target After-Tax Equity IRR	%	8.22%	?		# of months of Debt Service	months	6	?									
				?		Initial Debt Service Reserve	S	\$0	?									
	Other Closing Costs	s	S	?		O&M Reserve/Working Capital												
						# of months of O&M Expense	months	6	?									
	Summary of Sources of Funding for Total Installed	Cost		1		Initial O&M and WC Reserve	\$	\$1,939	?									
	Senior Debt (funds portion of hard costs)	0%	\$1	?		Interest on All Reserves	%	2.0%	?									
1	Equity (funds balance of hard costs + all soft costs)	19%	\$31,939	?														
1	Total Value of Grants (excl. pmt in lieu of ITC, if applicable)	81%	\$140,132	?	11_	Depreciation Allocation	Input Values											
1	Total Installed Cost	\$	\$172,07	?		Bonus Depreciation	Yes		?] [
1						% of Bonus Depreciation applied in Year 1	50%		?									
I	Tax	Units	Input Value		11	Allocation of Costs	5-year MACRS	7-year MACRS	15-year MACRS	20-year MACRS	5-year SL	15-year SL	20-year SL	39-year SL	Non-Depreciable			
	Is owner a taxable entity?		Yes	?	11													
	Federal Income Tax Rate	%	35.0%	?		Generation Equipment	96.0%	0.0%	2.0%	0.0%	0.0%	0.0%	2.0%	0.0%	0.0%	?		
	Federal Tax Benefits used as generated or carried forward	rd?	As Generated	?		Balance of Plant	50.0%	0.0%	0.0%	0.0%	0.0%	50.0%	0.0%	0.0%	0.0%	?		
	State Income Tax Rate	%	8.5%	?		Interconnection	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	?		
	State Tax Benefits used as generated or carried forward's	,	As Generated	?		Development Costs & Fee	80.0%	0.0%	0.0%	0.0%	0.0%	5.0%	5.0%	0.0%	10.0%	2		
1	Effective Income Tax Rate	%	40.53%	2		Reserves & Financing Costs	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	50.0%	0.0%	50.0%	?		
	Depreciation Allocation	1	See table ==>	11 7														

 Unit Definitions

 (MV) Mixiowatt = a standard measure of electrical capacity, equal to 1000 Watts.

 (MN) Mixiowatt = a standard measure of electrical cuput. A 1 kW generator operating at rated capacity for one hour will produce 1 kWh of electricity.

 (UC) direct current — the undirectional flow of electric charge

 (SAV) # CREST model relates are in nominal dolars

 (SAW) = an annual expense (or revenue) based on generator capacity

 (SAW) = - on type in Nometh tou:

 (SAW) = - on type in Nometh read applied duration or project year

 (SAW) = - on type in Nometh or Months to which an input applies

 (SAW) = - ontopies whether the two dedt service coverage ratio tests have passed or failed.

		Performance, Co	ost, Opera	ting, Tax & Financing Inputs											Lookup for State Ave Factor	erage Capacity
Check		Notes	Check				Notes								State List	DC Capacity factor
	Selected Technology	Photovoltaic ?														0.000
															AK	9.0%
	Project Size and Performance Units	Input Value		Cost-Based Tariff Rate Structure	Units	Input Value	l								AR	15.1%
	Generator Nameplate Capacity kW dc	66.1 ?		Payment Duration for Cost-Based Tariff	years	25	?								AZ	19.4%
	Net Capacity Factor: Select "State Average" or "Custom" → Net C E : If "State Average" method, then select state →	State Average ?		% of Year-One Tariff Rate Escalated	%	0.0%	?								CA	18.0%
	Net C.1 II State Average Internot, then select state ->			Cost-based Family Escalation Mate	70	0.078									ст	13.7%
	Net Capacity Factor, Yr 1	15.0%		Forecasted Market Value of Production; applies after	Incentive Expiration		?								DE	14.5%
	Production, Yr 1 kWh	88,217 ?													FL	16.0%
	Project Useful Life vears	25 ?													GA HI	15.3%
															IA	13.8%
	Capital Costs Units	Input Value		Padaut has automa	11-14-	In second Markow	1								ID	16.2%
	Select Cost Level of Detail	Intermediate ?		Federal Incentives Select Form of Federal Incentive	Units	Neither	?								IL IN	14.0%
	Generation Equipment \$	\$128,234 ?													KS	16.4%
	Balance of Plant \$	\$0 ?													кү	14.0%
	Development Costs & Fee \$	\$30,000 ?													LA	15.1%
	Reserves & Financing Costs \$	\$1,858 ?													MD	14.6%
	Tatal lost-lind Oast (hafaas askatas (masta (i ass))	\$400.000 0													ME	13.1%
	Total Installed Cost (before rebates/grants, if any) \$ Total Installed Cost (before rebates/grants, if any) \$/Watt dc	\$160,092 ?													MI	13.2%
	winding of the second s														мо	14.9%
	Operations & Maintenance Units	Input Value		Additional Federal Grants (Other than Section 1603)	\$	\$0	?								MS	15.3%
	Fixed O&M Expense, Yr 1 \$/kW-vr dc	\$17.21 ?		Federal Grants Treated as Taxable Income?	1	tes	<u>(</u>								NC	15.0%
	Variable O&M Expense, Yr 1 ¢/kWh	0.00 ?		State Rebates, Tax Credits and/or REC Revenue	Units	Input Value									ND	14.2%
	O&M Cost Inflation, initial period %	2.5% ?		Select Form of State Incentive		Neither	?								NE	15.8%
	O&M Cost Inflation, thereafter %	2.5%													NH	13.2%
	Insurance, Yr 1 (% of Total Cost) %	1.0%													NM	19.5%
	Insurance, Yr 1 (\$) (Provided for reference) \$	\$1,582 ?													NV	18.6%
	Project Management Yr 1 S/yr Property Tax or PILOT. Yr 1 S/yr	\$0 ? \$0 ?													NY	13.3%
	Annual Property Tax Adjustment Factor %	0.0%													ок	16.5%
	Land Lease \$/yr	\$0 ?													OR	14.6%
	Royalties (% of revenue) % Royalties, Yr 1 (\$) (Provided for reference) \$	\$0.0%													RI	13.5%
															sc	15.8%
	Construction Financing Units	Input Value		Additional State Rebates/Grants	\$/Watt	\$1.94	?								SD	14.8%
	Interest Rate (Annual) %	0.0%		State Rebates/Grants Treated as Taxable Income?	φ	No	?								тх	16.2%
	Interest During Construction \$	\$0 ?					·								UT	17.9%
	Permanent Einanging Units	Input Value		Capital Expenditures During Operations: Inverter Repl 1st Equipment Replacement	lacement	Input Value	2								VA	14.9%
	% Debt (% of hard costs) (mortgage-style amort.) %	0% ?		1st Replacement Cost (\$ in year replaced)	\$/Watt dc	\$0.150	?								WA	13.2%
				2nd Equipment Replacement	year	25	?								wi	13.7%
1				Zno Replacement Cost (\$ in year replaced)	\$/Watt dc	\$0.150									wv	13.1%
1			11	Reserves Funded from Operations	Units	Input Value	1								, <u> </u>	4714/9
				Decommissioning Reserve		Onesetiene										
				Reserve Requirement	s	Operations \$0	?									
					· · · ·		·									
	% Equity (% bard coets) (soft costs also equity funded)	100%	11	Initial Funding of Reserve Accounts	Units	Input Value										
	% Equity (% hard costs) (soft costs also equity funded) %	8.22% ?		# of months of Debt Service	months	6	2									
		?		Initial Debt Service Reserve	\$	\$0	?									
	Other Closing Costs \$	\$0. ?		O&M Reserve/Working Capital	monthe	6	2									
	Summary of Sources of Funding for Total Installed Cost			Initial O&M and WC Reserve	montris \$	\$1.858	?									
	Senior Debt (funds portion of hard costs) 0%	\$0 ?		Interest on All Reserves	%	2.0%	?									
	Equity (funds balance of hard costs + all soft costs) 20% Total Value of Grante (and partia liqued UC, if applicable) 20%	\$31,858 ?	11	Depresiation Allocation	Input Values											
1	Total Installed Cost \$	\$160,092 ?		Bonus Depreciation	Yes		?									
1				% of Bonus Depreciation applied in Year 1	50%		?									
	Tax Units	Input Value	11	Allocation of Costs	5-year MACRS	7-year MACRS	15-year MACRS	20-year MACRS	5-year SL	15-year SL	20-year SL	39-year SL	Non-Depreciable			
	Federal Income Tax Rate %	35.0% ?		Generation Equipment	96.0%	0.0%	2.0%	0.0%	0.0%	0.0%	2.0%	0.0%	0.0%	?		
	Federal Tax Benefits used as generated or carried forward?	As Generated ?		Balance of Plant	50.0%	0.0%	0.0%	0.0%	0.0%	50.0%	0.0%	0.0%	0.0%	?		
	State Income Tax Rate % State Tax Repetite used as experiated or carried forward?	8.5% ?		Interconnection	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	?		
	Effective Income Tax Rate %	40.53% ?		Reserves & Financing Costs	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	50.0%	0.0%	50.0%	?		
L	Depreciation Allocation	see table ==> ?														

Unit Definitions
(WV) kilowatt — a standard measure of electrical capacity, equal to 1000 Watts.
(WV) kilowatt how — a standard measure of electrical cuput. A 1 kW generator operating at rated capacity for one hour will produce 1 kWh of electricity.
(D) direct current — he unidencifonal flow of electric charge
(AC) alternating current — he muldimectional flow of electric charge
(SW+Y) — a munual expense (or revenue) based on generator capacity
(S) — ALI CREST model values are in nominal dollars
(EVWN) — constrained flow of electric charge
(SW+Y) — an input spineted be to a specified duration or project year
(Sy) — inputs measured in dollars and applied annually
(months) — destinates the number of months to which an input applies
Pass/Fail — denotes whether the two debt service coverage ratio tests have passed of failed.

			Perform	ance, Co	ost, Ope	rating, Tax & Financing Inputs											Lookup for State Av	erage Capacity
Check				Notes	Chec	ĸ			Notes								State List	DC Capacity factor
	Selected Technology		Photovoltaic	?													АК	9.0%
	Project Size and Performance	Unite	Input Value	1		Cost-Based Tariff Pate Structure	Unite	Innut Valuo	1								AL	15.1%
	Generator Nameplate Capacity	kW dc	86.4	?		Payment Duration for Cost-Based Tariff	vears	25	?								AK	19.4%
	Net Capacity Factor: Select "State Average" or "Custom" -	→	State Average	?		% of Year-One Tariff Rate Escalated	%	0.0%	?								CA	18.0%
	Net C.F.: If "State Average" method, then select state →		MT	?		Cost-Based Tariff Escalation Rate	%	0.0%	?								co	17.7%
	Net Consolty Easter, Vr.1		45.00/	2		Ecrocasted Market Value of Production: applies after	Incentive Expiration										CT	13.7%
	Production Vr 1	kWh	88 217	2		Torecasted market value of Troduction, applies atter	Incentive Expiration		- r								DE El	14.5%
	Annual Production Degradation	%	0.5%	?													GA	15.3%
	Project Useful Life	years	25	?													н	16.9%
	a 1.1 a .			.													IA	13.8%
	Capital Costs Select Cost Level of Detail	Units	Input Value	2		Enderal Incentives	Unite	Input Value	1								ID	16.2%
	Select Cost Level of Detail		Internetiate			Select Form of Federal Incentive	Units	Neither	?								IN	13.7%
	Generation Equipment	\$	\$177,148	?													KS	16.4%
	Balance of Plant	\$	\$0	?													кү	14.0%
	Interconnection	ş	\$0	?													LA	15.1%
	Reserves & Financing Costs	s S	\$2,431	2													MD	13.3%
		ų.	φ2,401														ME	13.1%
	Total Installed Cost (before rebates/grants, if any)	\$	\$209,579	?													MI	13.2%
	Total Installed Cost (before rebates/grants, if any)	\$/Watt dc	\$2.68	?			-										MN	13.5%
	Operations & Meintenance	Unito	Innut Voluo	n		Additional Federal Grants (Other than Section 1603)	¢.	03	2								MO	14.9%
	Select Cost Level of Detail	Units	Intermediate	2		Eederal Grants Treated as Taxable Income?	Ŷ	Yes	?								MT	15.3%
	Fixed O&M Expense, Yr 1	\$/kW-yr dc	\$17.21	?		roderar oranto fronte do ronabio modifio.		100									NC	15.3%
	Variable O&M Expense, Yr 1	¢/kWh	0.00	?		State Rebates, Tax Credits and/or REC Revenue	Units	Input Value]								ND	14.2%
	O&M Cost Inflation, initial period	%	2.5%	?		Select Form of State Incentive		Neither	?								NE	15.8%
	Initial Period ends last day of: O&M Cost Inflation, thereafter	year %	2.5%	?													NH	13.2%
	Insurance, Yr 1 (% of Total Cost)	%	1.0%	?													NM	19.5%
	Insurance, Yr 1 (\$) (Provided for reference)	\$	\$2,071	?													NV	18.6%
	Project Management Yr 1	\$/yr	\$0	?													NY	13.3%
	Property Tax or PILOT, Yr 1	\$/yr	\$0	?													ОН	13.2%
	Annual Property Tax Adjustment Factor	% \$/vr	0.0%	2			+ +										OK	16.5%
	Royalties (% of revenue)	%	0.0%	?													PA	13.5%
	Royalties, Yr 1 (\$) (Provided for reference)	\$	\$0	?													RI	13.8%
	Orantesetter Florencies	11-14-	In most Malera	n		Additional Orate Debates (Occurs	644/	£0.00									sc	15.8%
	Construction Financing	months	Input value	2		Total & Can on State Rebates/Grants	\$/Watt	\$2.08	2								SU	14.8%
	Interest Rate (Annual)	%	0.0%	?		State Rebates/Grants Treated as Taxable Income?	Ŷ	No	?								тх	16.2%
	Interest During Construction	\$	\$0	?													UT	17.9%
	a			.		Capital Expenditures During Operations: Inverter Rep	lacement	Input Value									VA	14.9%
	Permanent Financing % Debt (% of bard costs) (mortrage-style amort)	Units	Input Value	2		1st Equipment Replacement	year \$///att.dc	12 \$0.150	2								VT	12.9%
	// Debt (// or hard coata) (mongage-style amort.)	78	070			2nd Equipment Replacement	vear	25	?								WI	13.2%
						2nd Replacement Cost (\$ in year replaced)	\$/Watt dc	\$0.150	?								wv	13.1%
																	WY	17.1%
					11	Reserves Funded from Operations	Units	Input Value										
						Fund from Operations or Salvage Value?	1	Operations	2									
						Reserve Requirement	\$	\$0	?									
						Initial Funding of Reserve Accounts	Units	Input Value										
	% Equity (% hard costs) (soft costs also equity funded)	%	100%	?		Debt Service Reserve	months	0	2									
	Target Alter-Tax Equity IKK	70	0.2270	2		Initial Debt Service Reserve	s s	\$0	2									
	Other Closing Costs	\$	\$0	?		O&M Reserve/Working Capital												
				· · · · ·		# of months of O&M Expense	months	6	?									
	Summary of Sources of Funding for Total Installed Co	ost				Initial O&M and WC Reserve	\$	\$2,431	?									
	Senior Debt (runds portion of hard costs) Equity (funds balance of bard costs + all soft costs)	-10%	\$0			Interest on All Reserves	%	2.0%										
	Total Value of Grants (excl. pmt in lieu of ITC, if applicable)	110%	\$231.552	?	11	Depreciation Allocation	Input Values											
	Total Installed Cost	\$	\$209,579	?		Bonus Depreciation	Yes		?									
						% of Bonus Depreciation applied in Year 1	50%		?				1					
	Tax	Units	Input Value		11	Allocation of Costs	5-year MACRS	7-year MACRS	15-year MACRS	20-year MACRS	5-year SL	15-year SL	20-year SL	39-year SL	Non-Depreciable			
	Federal Income Tay Rate	%	T 0S 35.0%	2		Generation Equipment	96.0%	0.0%	2.0%	0.0%	0.0%	0.0%	2.0%	0.0%	0.0%	2		
	Federal Tax Benefits used as generated or carried forward	?	As Generated	?		Balance of Plant	50.0%	0.0%	0.0%	0.0%	0.0%	50.0%	0.0%	0.0%	0.0%	?		
	State Income Tax Rate	%	8.5%	?		Interconnection	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	?		
	State I ax Benefits used as generated or carried forward?	9/	As Generated	?		Development Costs & Fee	80.0%	0.0%	0.0%	0.0%	0.0%	5.0%	5.0%	0.0%	10.0%	?		
	Depreciation Allocation	70	40.53% See table ==>			Reserves & Financing Costs	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	50.0%	0.0%	30.0%	r -		
	1			u - 1.														

 Unit Definitions

 (kW) kilowatt – a standard measure of electrical capacity, equal to 1000 Watts.

 (kW) kilowatt – a standard measure of electrical cuput. A 1 kW generator operating at rated capacity for one hour will produce 1 kWh of electricity.

 (bC) direct current – the multirectional flow of electric charge

 (SKW-yr) – an annual expense (or revenue) based on generator capacity

 (SW-yr) – an annual expense (or revenue) based on generator capacity

 (SW-yr) – an annual expense (or revenue) based on generator capacity

 (SW-yr) – an annual expense (or revenue) base on generator capacity

 (SW-yr) – an annual expense (or revenue) base on generator capacity

 (SW-yr) – an annual expense (or revenue) base concertage

 (PAM) – charts per klowat hour base are in nominal dolars

 (PAM) – one private per klowat hour base as a percentage

 (Ywar or year) – an input applied to a specified duration or project year

 (Syr) – inputs measured in dolars and appled annually

 (months) – despirates the number of months to which an input applies

 Pass/Fal – denotes whether the two dobt service coverage ratio tests have passed or failed.

APPENDIX E: NWE ELECTRICAL PERMIT

Received:

Level 1 Small Generator Facility Interconnection Request

Applicability

For interconnecting an electric Small Generator Facility with aggregate Nameplate Capacity of up to 50 kilowatts ("kW") alternating current ("AC") using certified interconnection equipment.

Electric Distribution Company: NorthWestern Energy ("NorthWestern")

Designated Contact Person: Interconnection Specialist

Address: 11 East Park Butte, MT 59701

Telephone: 406-497-4165

E-Mail: northwesternenergynetmeter@northwestern.com

Request for Interconnection ("Request") is considered complete when all applicable information required below is provided. Additional information to evaluate the Request may be required.

Preamble and Instructions

When used in this Request, with initial capitalization, the terms specified shall have the meanings indicated or specified in the Request. This Request applies to a Small Generator Facility located on the utility Customer's premises that:

- is connected, or will be connected, to NorthWestern's Electric Distribution System,
- has an aggregate Nameplate Capacity of generation and storage components of not more than 50 kW AC,
- has storage components that store and discharge only electrical energy produced from the net metering system and do not store or discharge electrical energy received from NorthWestern's Electric Distribution System, and
- is designed to operate in parallel with the Electric Distribution System, and has equipment-labeled and publicly listed by a Nationally Recognized Testing Laboratory at the time of the Request.

For Level 1 Small Generator Facilities that include a net meter, refer to NorthWestern's Electric Tariff Rule No. 16 Electric Net Metering for applicability, terms and conditions, and additional relevant information.

The Customer installing the Small Generator Facility must be in Good Standing with NorthWestern.

An Applicant may submit this Request by hand delivery, mail, or e-mail to NorthWestern's Interconnection Department.

Processing Fee

A non-refundable processing fee of \$200 must accompany this Request.

Applicant [Variable]

4

Legal Name of Applicant (or, if a business, business's name) – Must be the NorthWestern Customer, or the owner of the premises if the Customer is a tenant.

Contact Person:		
Mailing Address:		
City:	State:	Zip:
Telephone (Day):	(Evening):	
E-Mail:		
Facility Location (if Different from	n mailing address):	
Alternate Contact Information (if a	lifferent from Applicant)	
Alternate Contact Information (If C	mierent nom rippnount)	
Contact Name:		
Contact Name:		
Contact Name: Title: Address:		
Contact Name: Title: Address: City:	State:	Zip:
Contact Name: Title: Address: City: Telephone (Day):	State: (Evening):	Zip:

Request is for:	New Small Generator Facility on existing electric service that will be
-	net metered
	New Small Generator Facility on existing electric service that will <u>not</u>
	be net metered
	Capacity addition to existing Small Generator Facility
	New Small Generator Facility on new electric service (New
	Construction)

For installations at locations with existing electric service to which the proposed Small Generator Facility will interconnect, provide:

Premises Address of Existing Service:

Existing Electric Account Number:

Existing Electric Meter Number (located on bill - is meter that will be replaced if net meter will be installed):

> NorthWestern Energy Delivering & Bright Future

NorthWestern Energy Net Metering Department Interconnection Specialist NorthWesternEnergyNetMeter@northwestern.com

0 406-497-4165

11 E Park St Butte, MT 59701-1711

Form	No.	

Small Generator I	Facility Information – Check all that solar wind and/or hydropower)	apply (Note	<u>:: Net metered</u>	l facilities can
Energy Source:	Solar Wind Hydro D	viesel 🗌 Na	ıtural Gas 🗌	
	Fuel Oil 🗌 Battery 🗌 Other (desc	cribe)	<u>.</u>	
Prime Mover: Re	ciprocating Engine 🗌 Fuel Cell 🗌] Turbine [ן	
Other (state type)	Not Applicable	e 🔄		
Generator Type: S	Synchronous Generator 🔲 Induction	on Generato	r 🗌	
I	nverter Based Generator 🔲 Not A	pplicable 🗌]	
Total Nameplate	Capacity (Aggregate of all Sources)		_(kW)	(kVA)
Generator Namep generating source	late Capacity: (kW) s)	(kVA)	(list for each	source, if multiple
Storage Nameplat	te Capacity (kW)	_(kVA)	(kW	h)
Phase: Single Pha	ise 🔲 Three Phase 🗌			
Estimated Small (Estimated Small (Generator Facility Installation Date: Generator Facility In-Service Date:			
		1.		a at a d wa a wa than

Will the external, visible load break switch (generator disconnect switch) be located more than 10 feet from the meter? \Box Yes \Box No

If yes, NorthWestern's written approval, which may require a site visit, will be required. Please show the proposed location of the disconnect switch in the detailed site diagram referenced below, and include an explanation for why it is preferable for the disconnect switch to be located more than 10 feet from the meter.

Form No.	
Form NO.	

List components of the Small Generator Facility electrical equipment package, the certifying entity, and standard number. Attach additional sheets as needed for the components list and attach manufacturer specification sheets for all certified or standardized equipment, including Manufacturer and Model information. See Example below.

Electrical Equipment Description	Certifying Entity (IEEE 1547, NRTL*)	Standard #	
1.			
2.			
3.			
4.			
5.			

*Nationally Recognized Testing Laboratory

Enclose copy of site electrical one-line diagram showing the configuration of all Small Generator Facility equipment, current and potential circuits, and protection and control schemes if applicable. See example below. Is One-Line Diagram enclosed? Yes No

Enclose a detailed site diagram and any other documentation necessary to indicate the precise physical location of the proposed Small Generator Facility and related equipment (e.g., solar array diagram, inverter location, storage location, USGS topographic map or other diagram or documentation including solar array, inverter location, disconnect location, etc.). An example has been provided below.

If the proposed net metering system includes storage components, please provide an explanation of the charging, discharging, and operating plan for the storage device, including a one-line diagram that includes the storage device. Prior to connection of the net metering system to NorthWestern Energy's Electric Distribution System, Customer must be prepared to demonstrate that the net metering system's storage charge and discharge functions comply with Rule 16 of NorthWestern Energy's Electric Tariff.

Is Physical Location Documentation enclosed? 🗌 Yes 🗌 No

Form No. ____

Include in this Request a Line Diagram, Site Map of the proposed Small Scale Generator Facility and product specification sheets. See examples A, B and C as reference.

For installations requiring a net meter, provide the information required in Exhibit A, attached.

Applicant Signature

I hereby certify that, to the best of my knowledge, the information provided in this Request is true.

Print Name:	
Signature:	
Title (if applicable):	Date:

EXAMPLE 1: Line Diagram

4

Form No. _____

EXAMPLE 2: Site Plan

Form No. _____

Example 3: Equipment Specification Sheets

4

		 			· · · ·
PV Module Ratings @STC					
Module Make					-
Madule Model					
Max Power-Point Current (he)	A				
Max Power-Point Voltage (V _{MP})	V				
Open-Circuit Voltage (Voc)	<u>v</u>				
Short-Circuit Current (Ig)	<u> </u>				
Max Series Fuse (OCPD)	Α.				
Max Power (PMM)	w				
Max Voltage (TYP 600Vpc)	<u> </u>				
VOC Temp Coeff (mV/°C 🗋 or %/°C 🗔)					
If Coeff Supplied, Circle Units					
Inverter Kathet Inverter Make Inverter Model Max DC Volt Rating Max Power @ 40 °C Nominal AC Voltage Max AC Current Max OCPD Rating	V W V A A	Construction Name	Europale Operline Sta	odard Electrical Diag	7 m
		Contractor Name,	Example One-Line Star	ndard Electrical Diag	ram
		Address and Phone	for Small Scale, Single-Pl	hase PV Systems	
			Site Name:		
			System AC Size:		
		I ——	alsoni ve sere		
		Dezwen By:	Şae	Drawing NO E01-101-001	Rev
		 Checked by:	Scale Not To Scale (NTS)	Date:	Sheet

Exhibit A

Required Net Meter Applicant Information

Generally, Applicants utilizing a Net Meter strive to reduce their monthly total billed usage and minimize their unused excess energy balance (kilowatt-hour) at the time of the annual settle-up at the end of the selected 12-month billing period. This is very important because the excess energy balance resets to zero at that time.

In order to receive a Net Meter, please choose a settle-up month below. In accordance with normal metering practices, your applicable meter reading day during the selected settle-up month will be your annual settle-up date for the 12-month billing period. Depending on the date that the Small Generator Facility commences Interconnected operation, the first settle-up period may be more than 12 months. Tracking of excess electricity for billing purposes begins only after the Applicant is authorized for Interconnected operation of the Small Generator Facility in accordance with the Applicant's Interconnection Agreement. The Applicant should be aware that any generation from the Small Generator Facility that is exported onto NorthWestern's Electric Distribution System before a net meter installation is complete will be registered by the existing non-net meter and billed as consumption.

Settle-up Month fo	or the 12-month Billin	ng Period	
January	April	July 🗌	October

The selection of the settle-up month for the 12-month billing period is an important decision. Applicants are encouraged to examine and understand their electrical usage patterns and renewable energy system output in order to select the settle-up month that works best. A graph of the most recent 12 months of electrical usage is shown on your monthly electric bill. It may also be helpful to consult with a renewable energy installer.

Once the original settle-up month has been selected, the Applicant could choose to change their settle-up month. NorthWestern will grant a one-time change to the settle-up month for the 12-month billing period. After the one-time change has been confirmed by NorthWestern, the Applicant's applicable meter reading day in the new settle-up month will then become the permanent settle-up date.

For Applicant:

Print Name:	

Signature:	

m•.1	<i>CC</i> 11 11	`
l itle:	(if applicable	

Date:_____

APPENDIX F: NWE PROJECT QUALIFICATIONS AND PROPOSAL REQUIREMENTS

NorthWestern Energy E+ Renewable Custom Incentive Proposal Requirements For Non-Profit or Government/Public Buildings

The E+ Renewable Energy Program provides custom incentives for projects that benefit organizations and communities for non-profit or government facilities. Projects must provide civic value including education and visible representation of renewable energy technologies to a broad audience. A limited amount of electric Universal System Benefits (USB) funding is available.

Qualifications and Requirements:

- Incentives are available to approved commercial electric customers that are a non-profit or a government/public building. Final determination of eligibility rests solely with NorthWestern Energy
- Proposals are considered twice a year:
 - o Spring Proposals: Received by 5 p.m., Mountain Time on May 1
 - Fall Proposals: Received by 5 p.m., Mountain Time on November 1
- Project must be installed by NorthWestern Energy Renewable Energy Qualified Installer
- Project may not exceed total Alternating Current (AC) nameplate capacity of 50 kilowatts (kW)
- Project must meet NorthWestern's Interconnection Standards at the time of the installation
- Project must be net metered
- Projects that are not selected may submit for consideration in a future funding cycle

A cover letter and proposal are required. The cover letter must include:

- Organization name (name of non-profit organization or government/public building)
- Contact information (address, phone #, e-mail)
- Short project summary
 - o Amount of incentive requested
 - o Sector (i.e. government/public or non-profit)
 - o Non-profit organizations—include summary of the organization's purpose or mission statement
 - o Detailed Education Plan

A sample cover letter and Custom Incentive Proposal requirements are provided.

Projects are selected based upon ranking of the following five criteria:

- Non-Profit or Government/Public building
- Geographic Location NorthWestern looks at locations of past projects and where there are geographic gaps or need for public purpose balance
- Participant Match (at least 10%)
- Educational Value Detailed plan for providing education on the benefits of the project
- System Maintenance Include equipment warranty and detailed future maintenance strategy

Email (preferred) the Proposal and supporting documents: E+Programs@northwestern.com

Questions may be directed to the email above or by calling 888-700-6878

Or mail the Proposal and supporting documents:

NorthWestern Energy E+ Renewable Program 11 E Park St. Butte, MT 59701-1711

NorthWestern Energy E+ Renewable Custom Incentive Proposal Requirements

The Proposal must include the following details, be accompanied with a cover letter, and submitted by the deadline in order to be considered. Contracts will be developed for selected projects in advance of installations. Project must be net metered and meet NorthWestern Interconnection Standards.

ltem		What is Required?
1.	Organization	Government or non-profit entity name. If non-profit, provide documentation of non-profit status.
2.	Project description	Project type, nameplate size, and information such as component manufacturer(s) and mounting type (for solar PV), or component manufacturer(s), design, and tower height (for wind power).
3.	Project location	Address of installation (use physical location - not PO box). If multiple buildings exist, give location description (i.e. – shop, main office) and the meter number associated with the interconnection.
4.	Project parts list and costs	Include bid sheet (show complete and detailed parts list and costs).
5.	Project design costs	If design costs are incurred, list amount and design contractor(s) name and contact information.
6.	Project labor costs	Include labor costs, when applicable.
7.	Project total costs	Total parts, design, and labor costs (total lines 3 + 4 + 5).
8.	Amount of incentive requested	Provide amount and/or percentage of funding requested through the E+ Renewable Program.
9.	Other sources of funding	Include other funding sources that will support the project and amount of funding. (i.e self funded, Montana Alternative Energy Revolving Loan).
10.	Past projects	List and describe any other projects that were funded using USB renewable funding at this location.
11.	Nameplate capacity of system	Total Alternating Current (AC) nameplate capacity in kilowatts (kW).
12.	Projected system capacity factor	Expected average output divided by capacity.
13.	Projected yearly output of system	Provide in annual kilowatt hours (kWh).
14.	Projected life expectancy of system	Provide in years.
15.	Projected lifetime output of system	Provide in kilowatt hours (kWh).
16.	Describe if the system is being used in tandem with any other source of generation or storage.	List other system type (i.e gas generator, small wind, small hydro, battery storage).
17.	Describe monitoring and verification plan for the project.	What methods will customer use to track kWh produced and how will system performance be determined?
18.	Describe the system warranty and plan in place for system maintenance.	Include equipment warranty and detailed future maintenance strategy.
19.	Permits and permit jurisdictions that are applicable to this project.	List type of permit and jurisdiction (i.e. Electrical permit, City of Billings).
20.	Identify the customer group the project will most benefit.	List primary group (i.e residential, low-income, general public, government).
21.	List environmental impacts of the project.	List impacts -positive and negative (i.e greenhouse gas reductions, visual impacts of installations).
22.	NorthWestern Energy Renewable Energy Qualified Installer.	Provide the name of the NorthWestern Energy Renewable Energy Qualified Installer. (If to be competitively bid, please note.)
	Education Plan is Required. Plans	s must include the Following:
23.	Projected costs for educational seminars, media, tours, publications.	Provide type and projected cost.
24.	Projected number of people impacted.	Provide both direct and indirect contact statistics.
25.	List target audience group(s).	Provide all types (i.e. students, general public, and industry professionals).
26.	How will you verify project success?	Provide how contact statistics will be verified - if seminars or education, how will success be verified?

ANYWHERE MT LIBRARY 123 MAIN STREET ANYWHERE, MT 59700 406-555-5555

November 1, 2022

NorthWestern Energy E+ Renewable Program 11 E Park Street Butte, MT 59701-1711 Email: <u>E+Programs@northwestern.com</u>

Attached is the proposal for the 25.8 kW total Alternating Current (AC) nameplate capacity solar PV system on the Anywhere Library. The total cost of the project is \$86,700.00 for which we are requesting an incentive through Universal System Benefits dollars of \$69,360. We have secured 20% matching funds for the balance of the project funding.

Prior to seeking an E+ Renewable incentive for this project for this Public Building, our library formed a study group to research renewable energy technologies for our library as both a way to reduce energy costs over the long haul and to provide additional education to our clients on renewable energy. We have contacted a contractor listed on the NorthWestern Energy Renewable Energy Qualified Installer list to complete this project.

We have had an energy audit on our building. We are making progress on the recommendations of the audit to reduce our energy costs separate of the installation of the renewable generation. We have already changed out our lights to LEDs and taken advantage of NorthWestern's E+ Commercial Lighting Rebate program to help offset costs.

Our library is a taxpayer-supported community gathering place in Anywhere. The orientation of the solar panels will allow them to be highly visible from Main Street in our community. Additionally, we plan to have information about the solar energy in a display area near our public meeting rooms and we have submitted an education plan as part of our application to reach the broad audience of clients who use the library and its services. Additional details of our education plan is provided in our proposal. We believe this project will benefit the library and provide the community with a better understanding of renewable energy.

Complete project details are provided in the proposal.

Please contact me Jane Doe, at 406-555-5555, jane.doe@anywherelibrary.com or at the Anywhere Library with any questions.

Thank you very much for your consideration of this proposal.

Sincerely,

Jane Doe Anywhere Library Director